Important Formulas of Triangle

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

List of 31 Important Formulas of Triangle

Important Formulas of Triangle

Angles of Triangle ©

1) Angle A of Triangle
$f \mathrm{x} \angle \mathrm{A}=a \cos \left(\frac{\mathrm{~S}_{\mathrm{c}}^{2}+\mathrm{S}_{\mathrm{b}}^{2}-\mathrm{S}_{\mathrm{a}}^{2}}{2 \cdot \mathrm{~S}_{\mathrm{c}} \cdot \mathrm{S}_{\mathrm{b}}}\right)$
ex $27.66045^{\circ}=a \cos \left(\frac{(20 \mathrm{~m})^{2}+(14 \mathrm{~m})^{2}-(10 \mathrm{~m})^{2}}{2 \cdot 20 \mathrm{~m} \cdot 14 \mathrm{~m}}\right)$
2) Angle B of Triangle
fx $\angle \mathrm{B}=a \cos \left(\frac{\mathrm{~S}_{\mathrm{c}}^{2}+\mathrm{S}_{\mathrm{a}}^{2}-\mathrm{S}_{\mathrm{b}}^{2}}{2 \cdot \mathrm{~S}_{\mathrm{c}} \cdot \mathrm{S}_{\mathrm{a}}}\right)$
ex $40.5358^{\circ}=a \cos \left(\frac{(20 \mathrm{~m})^{2}+(10 \mathrm{~m})^{2}-(14 \mathrm{~m})^{2}}{2 \cdot 20 \mathrm{~m} \cdot 10 \mathrm{~m}}\right)$
3) Angle C of Triangle
fx
$\angle \mathrm{C}=a \cos \left(\frac{\mathrm{~S}_{\mathrm{b}}^{2}+\mathrm{S}_{\mathrm{a}}^{2}-\mathrm{S}_{\mathrm{c}}^{2}}{2 \cdot \mathrm{~S}_{\mathrm{b}} \cdot \mathrm{S}_{\mathrm{a}}}\right)$
ex $111.8037^{\circ}=a \cos \left(\frac{(14 \mathrm{~m})^{2}+(10 \mathrm{~m})^{2}-(20 \mathrm{~m})^{2}}{2 \cdot 14 \mathrm{~m} \cdot 10 \mathrm{~m}}\right)$
4) Third Angle of Triangle given Two Angles
fx $\angle \mathrm{C}=\pi-(\angle \mathrm{A}+\angle \mathrm{B})$
ex $110^{\circ}=\pi-\left(30^{\circ}+40^{\circ}\right)$

Area of Triangle

5) Area of Triangle
$f \mathrm{f} A=\frac{\sqrt{\left(S_{a}+S_{b}+S_{c}\right) \cdot\left(S_{b}+S_{c}-S_{a}\right) \cdot\left(S_{a}-S_{b}+S_{c}\right) \cdot\left(S_{a}+S_{b}-S_{c}\right)}}{4}$
ex
$64.99231 \mathrm{~m}^{2}=\frac{\sqrt{(10 \mathrm{~m}+14 \mathrm{~m}+20 \mathrm{~m}) \cdot(14 \mathrm{~m}+20 \mathrm{~m}-10 \mathrm{~m}) \cdot(10 \mathrm{~m}-14 \mathrm{~m}+20 \mathrm{~m}) \cdot(10 \mathrm{~m}+14 \mathrm{~m}-20 \mathrm{~m})}}{4}$
6) Area of Triangle by Heron's Formula
$f \mathrm{fx}=\sqrt{\mathrm{s} \cdot\left(\mathrm{s}-\mathrm{S}_{\mathrm{a}}\right) \cdot\left(\mathrm{s}-\mathrm{S}_{\mathrm{b}}\right) \cdot\left(\mathrm{s}-\mathrm{S}_{\mathrm{c}}\right)}$
ex $64.99231 \mathrm{~m}^{2}=\sqrt{22 \mathrm{~m} \cdot(22 \mathrm{~m}-10 \mathrm{~m}) \cdot(22 \mathrm{~m}-14 \mathrm{~m}) \cdot(22 \mathrm{~m}-20 \mathrm{~m})}$
7) Area of Triangle given Base and Height
$f \mathrm{f} A=\frac{1}{2} \cdot \mathrm{~S}_{\mathrm{c}} \cdot \mathrm{h}_{\mathrm{c}}$
ex $60 m^{2}=\frac{1}{2} \cdot 20 m \cdot 6 m$
8) Area of Triangle given Inradius and Semiperimeter
fx $\mathrm{A}=\mathrm{r}_{\mathrm{i}} \cdot \mathrm{s}$
ex $66 \mathrm{~m}^{2}=3 \mathrm{~m} \cdot 22 \mathrm{~m}$
9) Area of Triangle given Two Angles and Third Side
$f_{\mathrm{x}} \mathrm{A}=\frac{\mathrm{S}_{\mathrm{a}}^{2} \cdot \sin (\angle \mathrm{~B}) \cdot \sin (\angle \mathrm{C})}{2 \cdot \sin (\pi-\angle \mathrm{B}-\angle \mathrm{C})}$
ex $60.40228 \mathrm{~m}^{2}=\frac{(10 \mathrm{~m})^{2} \cdot \sin \left(40^{\circ}\right) \cdot \sin \left(110^{\circ}\right)}{2 \cdot \sin \left(\pi-40^{\circ}-110^{\circ}\right)}$
10) Area of Triangle given Two Sides and Third Angle
$f x A=S_{a} \cdot S_{b} \cdot \frac{\sin (\angle C)}{2}$
ex $65.77848 \mathrm{~m}^{2}=10 \mathrm{~m} \cdot 14 \mathrm{~m} \cdot \frac{\sin \left(110^{\circ}\right)}{2}$

Heights of Triangle

11) Height on Side A of Triangle
$f \mathrm{~h} \mathrm{~h}_{\mathrm{a}}=\frac{\sqrt{\left(\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{b}}-\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{a}}-\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}-\mathrm{S}_{\mathrm{c}}\right)}}{2 \cdot \mathrm{~S}_{\mathrm{a}}}$
$12.99846 \mathrm{~m}=\frac{\sqrt{(10 \mathrm{~m}+14 \mathrm{~m}+20 \mathrm{~m}) \cdot(14 \mathrm{~m}-10 \mathrm{~m}+20 \mathrm{~m}) \cdot(10 \mathrm{~m}-14 \mathrm{~m}+20 \mathrm{~m}) \cdot(10 \mathrm{~m}+14 \mathrm{~m}-20 \mathrm{~m})}}{2 \cdot 10 \mathrm{~m}}$
12) Height on Side B of Triangle
$f x h_{b}=\frac{\sqrt{\left(\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{b}}-\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{a}}-\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}-\mathrm{S}_{\mathrm{c}}\right)}}{2 \cdot \mathrm{~S}_{\mathrm{b}}}$ Open Calculator © ex
$9.284615 \mathrm{~m}=\frac{\sqrt{(10 \mathrm{~m}+14 \mathrm{~m}+20 \mathrm{~m}) \cdot(14 \mathrm{~m}-10 \mathrm{~m}+20 \mathrm{~m}) \cdot(10 \mathrm{~m}-14 \mathrm{~m}+20 \mathrm{~m}) \cdot(10 \mathrm{~m}+14 \mathrm{~m}-20 \mathrm{~m})}}{2 \cdot 14 \mathrm{~m}}$
13) Height on Side C of Triangle
$f x \mathrm{~h}_{\mathrm{c}}=\frac{\sqrt{\left(\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{b}}-\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{a}}-\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}-\mathrm{S}_{\mathrm{c}}\right)}}{2 \cdot \mathrm{~S}_{\mathrm{c}}}$
$6.499231 \mathrm{~m}=\frac{\sqrt{(10 \mathrm{~m}+14 \mathrm{~m}+20 \mathrm{~m}) \cdot(14 \mathrm{~m}-10 \mathrm{~m}+20 \mathrm{~m}) \cdot(10 \mathrm{~m}-14 \mathrm{~m}+20 \mathrm{~m}) \cdot(10 \mathrm{~m}+14 \mathrm{~m}-20 \mathrm{~m})}}{2 \cdot 20 \mathrm{~m}}$

Medians of Triangle

14) Median on Side A of Triangle
$f \mathrm{f} \mathrm{M}_{\mathrm{a}}=\frac{\sqrt{2 \cdot \mathrm{~S}_{\mathrm{c}}^{2}+2 \cdot \mathrm{~S}_{\mathrm{b}}^{2}-\mathrm{S}_{\mathrm{a}}^{2}}}{2}$
ex $16.52271 \mathrm{~m}=\frac{\sqrt{2 \cdot(20 \mathrm{~m})^{2}+2 \cdot(14 \mathrm{~m})^{2}-(10 \mathrm{~m})^{2}}}{2}$
15) Median on Side B of Triangle
$f \mathrm{M} \mathrm{M}_{\mathrm{b}}=\frac{\sqrt{2 \cdot S_{\mathrm{a}}^{2}+2 \cdot S_{\mathrm{c}}^{2}-S_{\mathrm{b}}^{2}}}{2}$
ex $14.17745 \mathrm{~m}=\frac{\sqrt{2 \cdot(10 \mathrm{~m})^{2}+2 \cdot(20 \mathrm{~m})^{2}-(14 \mathrm{~m})^{2}}}{2}$
16) Median on Side C of Triangle \preceq
$f \times \mathrm{M}_{\mathrm{c}}=\frac{\sqrt{2 \cdot \mathrm{~S}_{\mathrm{a}}^{2}+2 \cdot \mathrm{~S}_{\mathrm{b}}^{2}-\mathrm{S}_{\mathrm{c}}^{2}}}{2}$
ex $6.928203 \mathrm{~m}=\frac{\sqrt{2 \cdot(10 \mathrm{~m})^{2}+2 \cdot(14 \mathrm{~m})^{2}-(20 \mathrm{~m})^{2}}}{2}$

Perimeter of Triangle

17) Perimeter of Triangle
$f \mathrm{fx}=\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}$
ex $44 \mathrm{~m}=10 \mathrm{~m}+14 \mathrm{~m}+20 \mathrm{~m}$
18) Semiperimeter of Triangle

$$
f x=\frac{P}{2}
$$

ex $22 \mathrm{~m}=\frac{44 \mathrm{~m}}{2}$
19) Semiperimeter of Triangle given all Sides
$f_{\mathrm{x}} \mathrm{s}=\frac{\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}}{2}$
ex $22 \mathrm{~m}=\frac{10 \mathrm{~m}+14 \mathrm{~m}+20 \mathrm{~m}}{2}$

Radius of Triangle \Subset

20) Circumradius of Triangle
$f x \mathrm{r}_{\mathrm{c}}=\frac{\mathrm{S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{b}} \cdot \mathrm{S}_{\mathrm{c}}}{\sqrt{\left(\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{b}}-\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{a}}-\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}-\mathrm{S}_{\mathrm{c}}\right)}}$
$10.77051 \mathrm{~m}=\frac{10 \mathrm{~m} \cdot 14 \mathrm{~m} \cdot 20 \mathrm{~m}}{\sqrt{(10 \mathrm{~m}+14 \mathrm{~m}+20 \mathrm{~m}) \cdot(14 \mathrm{~m}-10 \mathrm{~m}+20 \mathrm{~m}) \cdot(10 \mathrm{~m}-14 \mathrm{~m}+20 \mathrm{~m}) \cdot(10 \mathrm{~m}+14 \mathrm{~m}-20 \mathrm{~m})}}$
21) Exradius Opposite to Angle A of Triangle
$f \mathrm{x} \mathrm{r}_{\mathrm{e}(\angle \mathrm{A})}=\sqrt{\frac{\left(\frac{\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}}{2}\right) \cdot\left(\frac{\mathrm{S}_{\mathrm{a}}-\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}}{2}\right) \cdot\left(\frac{\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}-\mathrm{S}_{\mathrm{c}}}{2}\right)}{\frac{\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}-\mathrm{S}_{\mathrm{a}}}{2}}}$
ex $5.416026 \mathrm{~m}=\sqrt{\frac{\left(\frac{10 \mathrm{~m}+14 \mathrm{~m}+20 \mathrm{~m}}{2}\right) \cdot\left(\frac{10 \mathrm{~m}-14 \mathrm{~m}+20 \mathrm{~m}}{2}\right) \cdot\left(\frac{10 \mathrm{~m}+14 \mathrm{~m}-20 \mathrm{~m}}{2}\right)}{\frac{14 \mathrm{~m}+20 \mathrm{~m}-10 \mathrm{~m}}{2}}}$
22) Inradius of Triangle
$f \mathbf{x} \mathrm{r}_{\mathrm{i}}=\frac{\sqrt{\left(\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}-\mathrm{S}_{\mathrm{a}}\right) \cdot\left(\mathrm{S}_{\mathrm{a}}-\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}\right) \cdot\left(\mathrm{S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}-\mathrm{S}_{\mathrm{c}}\right)}}{2 \cdot\left(\mathrm{~S}_{\mathrm{a}}+\mathrm{S}_{\mathrm{b}}+\mathrm{S}_{\mathrm{c}}\right)}$
$2.954196 \mathrm{~m}=\frac{\sqrt{(10 \mathrm{~m}+14 \mathrm{~m}+20 \mathrm{~m}) \cdot(14 \mathrm{~m}+20 \mathrm{~m}-10 \mathrm{~m}) \cdot(10 \mathrm{~m}-14 \mathrm{~m}+20 \mathrm{~m}) \cdot(10 \mathrm{~m}+14 \mathrm{~m}-20 \mathrm{~m})}}{2 \cdot(10 \mathrm{~m}+14 \mathrm{~m}+20 \mathrm{~m})}$

Sides of Triangle

23) Side A of Triangle

$f \mathrm{x} \mathrm{S}_{\mathrm{a}}=\sqrt{\mathrm{S}_{\mathrm{b}}^{2}+\mathrm{S}_{\mathrm{c}}^{2}-2 \cdot \mathrm{~S}_{\mathrm{b}} \cdot \mathrm{S}_{\mathrm{c}} \cdot \cos (\angle \mathrm{A})}$
ex $10.53688 \mathrm{~m}=\sqrt{(14 \mathrm{~m})^{2}+(20 \mathrm{~m})^{2}-2 \cdot 14 \mathrm{~m} \cdot 20 \mathrm{~m} \cdot \cos \left(30^{\circ}\right)}$
24) Side A of Triangle given Two Angles and Side B
$f \mathrm{f} \mathrm{S}_{\mathrm{a}}=\mathrm{S}_{\mathrm{b}} \cdot \frac{\sin (\angle \mathrm{A})}{\sin (\angle \mathrm{B})}$
ex $10.89007 \mathrm{~m}=14 \mathrm{~m} \cdot \frac{\sin \left(30^{\circ}\right)}{\sin \left(40^{\circ}\right)}$
25) Side A of Triangle given Two Angles and Side c
$f \times S_{a}=S_{c} \cdot \frac{\sin (\angle A)}{\sin (\angle C)}$
ex $10.64178 \mathrm{~m}=20 \mathrm{~m} \cdot \frac{\sin \left(30^{\circ}\right)}{\sin \left(110^{\circ}\right)}$
26) Side B of Triangle
$f \mathrm{f} \mathrm{S}_{\mathrm{b}}=\sqrt{\mathrm{S}_{\mathrm{a}}^{2}+\mathrm{S}_{\mathrm{c}}^{2}-2 \cdot \mathrm{~S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{c}} \cdot \cos (\angle \mathrm{B})}$
ex $13.91338 \mathrm{~m}=\sqrt{(10 \mathrm{~m})^{2}+(20 \mathrm{~m})^{2}-2 \cdot 10 \mathrm{~m} \cdot 20 \mathrm{~m} \cdot \cos \left(40^{\circ}\right)}$
27) Side B of Triangle given Two Angles and Side AC
$f \mathrm{~S} \mathrm{~S}_{\mathrm{b}}=\mathrm{S}_{\mathrm{a}} \cdot \frac{\sin (\angle \mathrm{B})}{\sin (\angle \mathrm{A})}$
ex $12.85575 \mathrm{~m}=10 \mathrm{~m} \cdot \frac{\sin \left(40^{\circ}\right)}{\sin \left(30^{\circ}\right)}$
28) Side B of Triangle given Two Angles and Side c
$S_{b}=S_{c} \cdot \frac{\sin (\angle B)}{\sin (\angle C)}$
ex $13.68081 \mathrm{~m}=20 \mathrm{~m} \cdot \frac{\sin \left(40^{\circ}\right)}{\sin \left(110^{\circ}\right)}$
29) Side C of Triangle
$f \mathrm{x} \mathrm{S}_{\mathrm{c}}=\sqrt{\mathrm{S}_{\mathrm{b}}^{2}+\mathrm{S}_{\mathrm{a}}^{2}-2 \cdot \mathrm{~S}_{\mathrm{a}} \cdot \mathrm{S}_{\mathrm{b}} \cdot \cos (\angle \mathrm{C})}$
ex $19.79307 \mathrm{~m}=\sqrt{(14 \mathrm{~m})^{2}+(10 \mathrm{~m})^{2}-2 \cdot 10 \mathrm{~m} \cdot 14 \mathrm{~m} \cdot \cos \left(110^{\circ}\right)}$
30) Side C of Triangle given Two Angles and Side $A \subset$
fx $\mathrm{S}_{\mathrm{c}}=\mathrm{S}_{\mathrm{a}} \cdot \frac{\sin (\angle \mathrm{C})}{\sin (\angle \mathrm{A})}$
ex $18.79385 \mathrm{~m}=10 \mathrm{~m} \cdot \frac{\sin \left(110^{\circ}\right)}{\sin \left(30^{\circ}\right)}$
31) Side C of Triangle given Two Angles and Side B
$f \mathrm{f} \mathrm{S}_{\mathrm{c}}=\mathrm{S}_{\mathrm{b}} \cdot \frac{\sin (\angle \mathrm{C})}{\sin (\angle \mathrm{B})}$
ex $20.46663 \mathrm{~m}=14 \mathrm{~m} \cdot \frac{\sin \left(110^{\circ}\right)}{\sin \left(40^{\circ}\right)}$

Variables Used

- $\angle \mathrm{A}$ Angle A of Triangle (Degree)
- $\angle B$ Angle B of Triangle (Degree)
- $\angle C$ Angle C of Triangle (Degree)
- A Area of Triangle (Square Meter)
- $\mathbf{h}_{\mathbf{a}}$ Height on Side A of Triangle (Meter)
- $\mathbf{h}_{\mathbf{b}}$ Height on Side B of Triangle (Meter)
- $\mathbf{h}_{\mathbf{c}}$ Height on Side C of Triangle (Meter)
- $\mathbf{M}_{\mathbf{a}}$ Median on Side A of Triangle (Meter)
- $\mathbf{M}_{\mathbf{b}}$ Median on Side B of Triangle (Meter)
- $\mathbf{M}_{\mathbf{c}}$ Median on Side C of Triangle (Meter)
- P Perimeter of Triangle (Meter)
- $\mathbf{r}_{\mathbf{c}}$ Circumradius of Triangle (Meter)
- $\mathbf{r}_{\mathbf{e}(\angle \mathrm{A})}$ Exradius Opposite to $\angle \mathrm{A}$ of Triangle (Meter)
- $\mathbf{r}_{\mathbf{i}}$ Inradius of Triangle (Meter)
- s Semiperimeter of Triangle (Meter)
- $\mathbf{S}_{\mathbf{a}}$ Side A of Triangle (Meter)
- \mathbf{S}_{b} Side B of Triangle (Meter)
- $\mathbf{S}_{\mathbf{c}}$ Side C of Triangle (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: acos, acos(Number)

The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.

- Function: cos, \cos (Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: sin, sin(Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

Check other formula lists

- Equilateral Triangle Formulas
- Isosceles Right Triangle Formulas
- Isosceles Triangle Formulas
- Right Angled Triangle Formulas
- Scalene Triangle Formulas
- Triangle Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

