

Electric Traction Drives Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Electric Traction Drives Formulas

Electric Traction Drives

1) Average Back Emf with Negligible Commutation Overlap

fx
$$\mathrm{E_b} = 1.35 \cdot \mathrm{E_L} \cdot \mathrm{cos}(\mathrm{ heta})$$

 $= 145.6046 \text{V} = 1.35 \cdot 120 \text{V} \cdot \cos(26\degree)$

2) DC Output Voltage of Rectifier in Scherbius Drive Given Maximum Rotor Voltage

$$\mathbf{E}_{\mathrm{DC}} = 3 \cdot \left(rac{\mathrm{E}_{\mathrm{peak}}}{\pi}
ight)$$

 $oxed{ex} 210.0845 \mathrm{V} = 3 \cdot \left(rac{220 \mathrm{V}}{\pi}
ight)$

3) DC Output Voltage of Rectifier in Scherbius Drive Given Rotor RMS Line Voltage

$$\mathbf{E}_{\mathrm{DC}} = \left(3\cdot\sqrt{2}
ight)\cdot\left(rac{\mathrm{E_{r}}}{\pi}
ight)$$

$$oxed{ex} 210.674 \mathrm{V} = \left(3 \cdot \sqrt{2}
ight) \cdot \left(rac{156 \mathrm{V}}{\pi}
ight)$$

4) DC Output Voltage of Rectifier in Scherbius Drive Given Rotor RMS Line Voltage at Slip

fx ${
m E_{DC}}=1.35\cdot {
m E_{rms}}$

Open Calculator 🚰

 $\texttt{ex} \ | 210.897 \text{V} = 1.35 \cdot 156.22 \text{V}$

5) Energy Dissipated during Transient Operation

 $\mathbf{E}_{\mathrm{t}} = \int \! \left(\mathrm{R} \cdot (\mathrm{i})^2, x, 0, \mathrm{T}
ight) \mathrm{d} t$

Open Calculator

 $oxed{ex} 160.224 \mathrm{J} = \int \Bigl(4.235\Omega \cdot (2.345 \mathrm{A})^2, x, 0, 6.88 \mathrm{s}\Bigr)$

6) Equivalent Current for Fluctuating and Intermittent Loads

 $\mathbf{E} egin{aligned} \mathbf{I}_{\mathrm{eq}} = \sqrt{\left(rac{1}{\mathrm{T}}
ight)} \cdot \int \Bigl((\mathrm{i})^2, x, 1, \mathrm{T} \Bigr) \end{aligned}$

Open Calculator 🗗

 $\mathbf{ex} = 2.16789 \mathrm{A} = \sqrt{\left(rac{1}{6.88 \mathrm{s}}
ight) \cdot \int \left(\left(2.345 \mathrm{A}
ight)^2, x, 1, 6.88 \mathrm{s}
ight)}$

7) Gear Tooth Ratio

 $a_{
m gear}=rac{n_1}{n_2}$

 $\boxed{\mathbf{ex}} 3 = \frac{60}{20}$

8) Motor Terminal Voltage in Regenerative Braking

 $extbf{V}_{
m a} = \left(rac{1}{ ext{T}}
ight) \cdot \int (ext{V}_{
m s} \cdot x, x, ext{t}_{
m on}, ext{T})$

Open Calculator

 $= 385.8454 \text{V} = \left(\frac{1}{6.88 \text{s}}\right) \cdot \int (118 \text{V} \cdot x, x, 1.53 \text{s}, 6.88 \text{s})$

9) Slip of Scherbius Drive given RMS Line Voltage

 $s = \left(rac{E_b}{E_r}
ight) \cdot \mathrm{modulus}(\cos(heta))$

Open Calculator

 $\boxed{ \textbf{ex} \ 0.835418 = \left(\frac{145 \text{V}}{156 \text{V}} \right) \cdot \text{modulus}(\cos(26\degree)) }$

10) Starting Time for Induction Motor under No Load

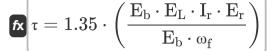
 $\mathbf{fz} \ \mathbf{t_s} = \left(-\frac{\tau_{\mathrm{m}}}{2}\right) \cdot \int \left(\left(\frac{\mathrm{s}}{\mathrm{s_{\mathrm{m}}}} + \frac{\mathrm{s_{\mathrm{m}}}}{\mathrm{s}}\right) \cdot x, x, 1, 0.05\right)$ $\mathbf{ex} \ 1.203632\mathrm{s} = \left(-\frac{2.359\mathrm{s}}{2}\right) \cdot \int \left(\left(\frac{0.83}{0.67} + \frac{0.67}{0.83}\right) \cdot x, x, 1, 0.05\right)$

Open Calculator 🗗

11) Time Taken for Drive Speed

 $\mathbf{t} = \mathbf{J} \cdot \int \left(rac{1}{ au - au_{\mathrm{r}}}, x, \omega_{\mathrm{m}1}, \omega_{\mathrm{m}2}
ight)^{2}$

Open Calculator


ex

 $\overline{ iggl \{ 4.509197 ext{s} = 10.0 ext{kg} \cdot ext{m}^2 \cdot \int iggl(rac{1}{5.4 ext{N*m} - 0.235 ext{N*m}}, x, 2.346 ext{rad/s}, 4.675 ext{rad/s} iggr) }$

12) Torque Generated by Scherbius Drive

Open Calculator 🗗

$$= 1.35 \cdot \left(\frac{145 \text{V} \cdot 120 \text{V} \cdot 0.11 \text{A} \cdot 156 \text{V}}{145 \text{V} \cdot 520 \text{rad/s}} \right)$$

13) Torque of Squirrel Cage Induction Motor

$$au = rac{ ext{K} \cdot ext{E}^2 \cdot ext{R}_{ ext{r}}}{\left(ext{R}_{ ext{s}} + ext{R}_{ ext{r}}
ight)^2 + \left(ext{X}_{ ext{s}} + ext{X}_{ ext{r}}
ight)^2}$$

Open Calculator

$$= \frac{0.6 \cdot (200 \text{V})^2 \cdot 2.75 \Omega}{(55\Omega + 2.75\Omega)^2 + (50\Omega + 45\Omega)^2}$$

Variables Used

- a_{qear} Gear Tooth Ratio
- E Voltage (Volt)
- E_b Back Emf (Volt)
- Enc DC Voltage (Volt)
- **E**L AC Line Voltage (Volt)
- Epeak Peak Voltage (Volt)
- Er RMS Value of Rotor Side Line Voltage (Volt)
- E_{rms} Rotor RMS Line Voltage with Slip (Volt)
- Et Energy Dissipated in Transient Operation (Joule)
- i Electric Current (Ampere)
- lea Equivalent Current (Ampere)
- I_r Rectified Rotor Current (Ampere)
- J Moment of Inertia (Kilogram Square Meter)
- K Constant
- n₁ Number 1 of Teeth of Driving Gear
- n₂ Number 2 of Teeth of Driven Gear
- R Resistance of Motor Winding (Ohm)
- R_r Rotor Resistance (Ohm)
- R_s Stator Resistance (Ohm)
- **S** Slip
- S_m Slip at Maximum Torque
- t Time Taken for Drive Speed (Second)
- T Time Taken for Complete Operation (Second)
- ton On-Period Time (Second)

- t_s Starting Time For Induction motor on No Load (Second)
- **V**_a Motor Terminal Voltage (Volt)
- V_S Source Voltage (Volt)
- X_r Rotor Reactance (Ohm)
- X_S Stator Reactance (Ohm)
- **0** Firing Angle (Degree)
- T Torque (Newton Meter)
- T_L Load Torque (Newton Meter)
- T_m Mechanical Time Constant of Motor (Second)
- **ω**_f Angular Frequency (Radian per Second)
- ω_{m1} Initial Angular Velocity (Radian per Second)
- ω_{m2} Final Angular Velocity (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: int, int(expr, arg, from, to)

 The definite integral can be used to calculate net signed area, which is the area above the x -axis minus the area below the x -axis.
- Function: modulus, modulus
 Modulus of a number is the remainder when that number is divided by another number.
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Electric Current in Ampere (A)

 Electric Current Unit Conversion
- Measurement: Energy in Joule (J)

 Energy Unit Conversion
- Measurement: Angle in Degree (°)
 Angle Unit Conversion
- Measurement: Electric Resistance in Ohm (Ω)
 Electric Resistance Unit Conversion
- Measurement: Electric Potential in Volt (V)

 Electric Potential Unit Conversion
- Measurement: Angular Velocity in Radian per Second (rad/s)
 Angular Velocity Unit Conversion

- Measurement: Torque in Newton Meter (N*m)

 Torque Unit Conversion
- Measurement: Moment of Inertia in Kilogram Square Meter (kg·m²)

 Moment of Inertia Unit Conversion
- Measurement: Angular Frequency in Radian per Second (rad/s)

 Angular Frequency Unit Conversion

Check other formula lists

- Electric Traction Drives Formulas Power & Energy Formulas •
- Electric Train Physics Formulas Traction Physics Formulas
- Mechanics of Train Movement
 Tractive Effort Formulas Formulas 🚰

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/15/2024 | 5:00:18 AM UTC

Please leave your feedback here...

