

Measurement of Distance with Tapes Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 24 Measurement of Distance with Tapes Formulas

Measurement of Distance with Tapes

Correction for Temperature and Measurements on Slope

1) Correction to be Subtracted from Slope Distance

fx
$$C_{
m h} = ({
m s} \cdot (1-\cos(heta)))$$

Open Calculator

$$\texttt{ex} \ 1.029958 \texttt{m} = (10.993 \texttt{m} \cdot (1 - \cos(25°)))$$

2) Correction to be Subtracted from Slope Distance given difference in Elevation

$$extbf{K} = rac{\left(\Delta ext{H}
ight)^2}{2 \cdot ext{s}}$$

$$= 10.23379 \text{m} = \frac{(15\text{m})^2}{2 \cdot 10.993 \text{m}}$$

3) Measured Length given Correction to be Subtracted from Slope Distance

 $\left|\mathbf{s} = \left(rac{\mathrm{C_h}}{1-\cos(heta)}
ight)
ight|$

Open Calculator

- $\boxed{ \textbf{ex} \ 10.99344 \text{m} = \left(\frac{1.03 \text{m}}{1 \cos(25°)} \right) }$
- 4) Measured Length given Temperature Correction
- $\left| \mathbf{f} \mathbf{x}
 ight| \mathbf{s} = \left(rac{C_t}{0.0000065 \cdot (T_f t)}
 ight)
 ight|$

Open Calculator

- ex $10 \mathrm{m} = \left(rac{0.00078 \mathrm{m}}{0.0000065 \cdot (22 ^{\circ} \mathrm{C} 10 ^{\circ} \mathrm{C})}
 ight)$
- 5) Temperature Correction to Measured Length
- fx $C_{\mathrm{t}} = (0.000065 \cdot (T_{\mathrm{f}} \mathrm{t}))$

Open Calculator 🗗

 $\boxed{ \textbf{ex} \left[0.00078 \text{m} = (0.000065 \cdot (22 \, ^{\circ}\text{C} - 10 \, ^{\circ}\text{C})) \right] }$

Correction for Tension and Sag to Measured Length

6) Sag Correction of Unsupported Tape

$$\mathbf{K} \mathbf{C_{\mathrm{s}}} = rac{\left(\mathbf{W}^2
ight) \cdot \left(\mathbf{U_{\mathrm{l}}^3}
ight)}{24 \cdot \left(\mathbf{P_{\mathrm{i}}^2}
ight)}$$

Open Calculator 🗗

ex
$$4.271484 \text{m} = \frac{\left((3 \text{kg/m})^2 \right) \cdot \left((9 \text{m})^3 \right)}{24 \cdot \left((8 \text{N})^2 \right)}$$

7) Tape Cross-Sectional Area for Tension Correction to Measured Length

$$\mathbf{K} = ((\mathrm{P_f} - \mathrm{P_i}) \cdot \mathrm{s}) \cdot rac{100000}{\mathrm{C_p} \cdot \mathrm{E_s}}$$

Open Calculator 🗗

- = $4.166051 \mathrm{m^2} = ((11.1 \mathrm{N} 8 \mathrm{N}) \cdot 10.993 \mathrm{m}) \cdot \frac{100000}{4.09 \mathrm{m} \cdot 200000 \mathrm{MPa}}$
- 8) Tape Elasticity Modulus given Tension Correction to Measured Length

$$\mathbf{E}_{\mathrm{s}} = ((\mathrm{P_f} - \mathrm{P_i}) \cdot \mathrm{s}) \cdot rac{100000}{\mathrm{C_p} \cdot \mathrm{A}}$$

9) Tape Weight given Sag Correction of Unsupported Tape

 $W = \left(rac{C_s \cdot 24 \cdot \left(P_i^2
ight)}{U_i^3}
ight)^{rac{1}{2}}$

Open Calculator 🚰

 $= 2.99983 {\rm kg/m} = \left(\frac{4.271 {\rm m} \cdot 24 \cdot \left((8 {\rm N})^2 \right)}{\left(9 {\rm m} \right)^3} \right)^{\frac{1}{2}}$

10) Tension Correction to Measured Length

 $\mathbf{K} \mathbf{C}_{\mathrm{p}} = \left(((\mathbf{P}_{\mathrm{f}} - \mathbf{P}_{\mathrm{i}}) \cdot \mathbf{s}) \cdot \frac{100000}{\mathbf{A} \cdot \mathbf{E}_{\mathrm{s}}} \right)$

Open Calculator 🗗

 $= \left(((11.1 \mathrm{N} - 8 \mathrm{N}) \cdot 10.993 \mathrm{m}) \cdot \frac{100000}{4.16 \mathrm{m}^2 \cdot 200000 \mathrm{MPa}} \right)$

Orthometric Correction

11) Departure given Distance in Feet

fx $\left[\mathrm{C_f} = 0.0239\cdot \mathrm{(F)}^2
ight]$

Open Calculator

 $\texttt{ex} \ 80.31404 \text{ft} = 0.0239 \cdot \left(105 \text{ft}\right)^2$

12) Departure given Distance in Kilometers

fx $C_{\mathrm{m}}=0.0785\cdot\mathrm{(K)}^2$

Open Calculator

 $= 706.5 \text{m} = 0.0785 \cdot (3.0 \text{km})^2$

13) Displacement given Distance in Feet 🗗

Open Calculator

 $\left| \mathrm{R_{f}} \right| \mathrm{R_{f}} = 0.0033 \cdot \mathrm{(F)}^{2}$

 $\texttt{ex} \ 11.08939 \text{ft} = 0.0033 \cdot (105 \text{ft})^2$

14) Displacement given Distance in Kilometers 🗗

 $\mathbf{R}_{\mathrm{f}} = 0.011 \cdot (\mathrm{D})^2$

Open Calculator

 $\mathbf{ex} \ 11.72539 \mathrm{ft} = 0.011 \cdot (0.57 \mathrm{km})^2$

15) Displacement given Distance in Miles 🛂

 $\boxed{\mathbf{ex} \left[12.29925 \mathrm{ft} = \frac{0.093 \cdot \left(11.5 \mathrm{mi} \right)^2}{} \right]}$ 5280

 $m R_f = rac{0.093\cdot (M)^2}{5280}$

Slope Corrections

16) Horizontal Distance in Slope Measurements 🗗

$$\mathbf{K} = \mathbf{L} \cdot \cos(\mathbf{x})$$

Open Calculator 🗗

$$ext{ex} \ 1.879385 ext{m} = 2 ext{m} \cdot ext{cos}(20\degree)$$

17) Horizontal offset given Slope Correction for Slopes of 10 Percent or

$$\Delta \mathrm{H} = (2 \cdot \mathrm{U_l} \cdot \mathrm{Cs})^{rac{1}{2}}$$

Open Calculator 🗗

$$= 15.87451 \mathrm{m} = (2 \cdot 9 \mathrm{m} \cdot 14 \mathrm{m})^{\frac{1}{2}}$$

18) Slope Correction for Slopes Greater than 10 Percent

$$extbf{Cs} = \left(rac{ ext{h}^2}{2 \cdot ext{U}_1}
ight) + \left(rac{ ext{h}^4}{8 \cdot ext{U}_1^3}
ight)$$

ex
$$14.28618 \mathrm{m} = \left(\frac{(13\mathrm{m})^2}{2 \cdot 9\mathrm{m}}\right) + \left(\frac{(13\mathrm{m})^4}{8 \cdot (9\mathrm{m})^3}\right)$$

19) Slope Correction for Slopes of 10 Percent or Less

fx
$$C_S = rac{\Delta H^2}{2 \cdot U_1}$$

Open Calculator 🚰

$$\mathsf{CS} = \frac{\mathsf{T}}{2 \cdot \mathsf{U}_1}$$

ex
$$12.5 \text{m} = \frac{(15 \text{m})^2}{2 \cdot 9 \text{m}}$$

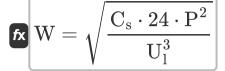
Temperature Corrections

20) Pull-on Tape given Sag Correction between Points of Support

$$extstyle extstyle ext$$

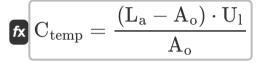
Open Calculator 🗗

$$= \times 8.000454 \text{N} = \sqrt{\frac{-(3 \text{kg/m})^2 \cdot (9 \text{m})^3}{24 \cdot 4.271 \text{m}}}$$


21) Sag Correction between Points of Support

$$ext{C}_{
m s} = - ig(ext{W}^2 ig) \cdot rac{ ext{U}_{
m l}^3}{24 \cdot ext{P}^2} igg]$$

$$ext{ex} ext{ } ext{-}4.271484 ext{m} = -\Big(ig(3 ext{kg/m}ig)^2\Big) \cdot rac{ig(9 ext{m}ig)^3}{24 \cdot ig(8.00 ext{N}ig)^2}$$


22) Tape Weight per Foot for Sag Correction between Points of Support

Open Calculator 🚰

$$= \sqrt{\frac{4.271 \text{m} \cdot 24 \cdot \left(8.00 \text{N}\right)^2}{\left(9 \text{m}\right)^3} }$$

23) Temperature Corrections for Incorrect Tape Length

Open Calculator

$$= \frac{(5.5 \text{m} - 1.8 \text{m}) \cdot 9 \text{m}}{1.8 \text{m}}$$

24) Unsupported Tape Length given Sag Correction between Points of Support

$$\mathbf{E} \mathbf{U}_{l} = \left(rac{24 \cdot \mathrm{C_s} \cdot \mathrm{P}^2}{\mathrm{W}^2}
ight)^{rac{1}{3}}$$

$$oxed{ex} 8.99966 \mathrm{m} = \left(rac{24 \cdot 4.271 \mathrm{m} \cdot (8.00 \mathrm{N})^2}{\left(3 \mathrm{kg/m}
ight)^2}
ight)^{rac{1}{3}}$$

Variables Used

- A Area of Tape (Square Meter)
- Ao Nominal Tape Length (Meter)
- C Correction to be Subtracted (Meter)
- C_f Departure in ft (Foot)
- C_h Correction to be Subtracted from Slope Distance (Meter)
- C_m Departure in Meter (Meter)
- C_p Tension Correction (Meter)
- C_s Sag Correction (Meter)
- C_t Length Correction due to Temperature (Meter)
- C_{temp} Temperature Corrections for Incorrect Tape Length (Meter)
- Cs Slope Correction (Meter)
- D Distance (Kilometer)
- E_s Modulus of Elasticity of Steel (Megapascal)
- **F** Distance in ft (Foot)
- **h** Elevation Difference (Meter)
- **K** Distance in Kilometers (Kilometer)
- L Slope Distance (Meter)
- La Actual Tape Length (Meter)
- M Distance in Miles (Mile)
- P Pull on Tape (Newton)
- Pf Final Tension (Newton)
- Pi Initial Tension (Newton)

- R Horizontal Distance (Meter)
- R_f Displacement in ft (Foot)
- S Measured Length (Meter)
- t Initial Temperature (Celsius)
- **T**_f Final Temperature (Celsius)
- **U**_I Unsupported Length (Meter)
- **W** Weight of Tape per Unit Length (Kilogram per Meter)
- X Vertical Angle (Degree)
- **ΔH** Difference in Elevation (*Meter*)
- **0** Slope Angle (Degree)

Constants, Functions, Measurements used

- Function: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m), Foot (ft), Kilometer (km), Mile (mi)
 Length Unit Conversion
- Measurement: Temperature in Celsius (°C)
 Temperature Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa)
 Pressure Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion
- Measurement: Linear Mass Density in Kilogram per Meter (kg/m)

 Linear Mass Density Unit Conversion

Check other formula lists

- Photogrammetry Stadia and Compass Surveying Formulas Formulas
- Compass Surveying Formulas •
- Electromagnetic Distance Measurement Formulas
- Measurement of Distance with Tapes Formulas
- Surveying Curves Formulas

- Surveying Vertical Curves
- Theory of Errors Formulas
- Transition Curves Surveying Formulas [4
- Traversing Formulas
- Vertical Control Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/19/2024 | 5:41:45 AM UTC

Please leave your feedback here...

