

Direct Strains of Diagonal Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 11 Direct Strains of Diagonal Formulas

Direct Strains of Diagonal

1) Modulus of Rigidity using Young's Modulus and Poisson's Ratio

Open Calculator

$$\mathbf{K} = rac{\mathbf{E}}{2 \cdot (1 + \mathbf{v})}$$

$$extbf{ex} 15 ext{MPa} = rac{39 ext{MPa}}{2 \cdot (1+0.3)}$$

2) Poisson's ratio given tensile strain due to compressive stress in diagonal BD

Open Calculator

3) Poisson's Ratio using Modulus of Rigidity 🛂

$$\mathbf{r}$$
 $\mathbf{v} = \left(rac{\mathrm{E}}{2\cdot\mathrm{G}}
ight) - 1$

Open Calculator G

4) Shear Strain in Diagonal given Tensile Strain for Square Block

fx $\eta = \left(2 \cdot \epsilon_{
m diagonal}
ight)$

Open Calculator 🚰

Open Calculator 2

Open Calculator 2

Open Calculator 2

- - 5) Tensile strain in diagonal BD of square block ABCD due to compressive stress
- $\epsilon_{
 m tensile} = rac{{f v} \cdot {f \sigma}_{
 m t}}{{
 m E}_{
 m bar}}$
- $oxed{ex} 0.004091 = rac{0.3 \cdot 0.15 ext{MPa}}{11 ext{MPa}}$
- 6) Tensile Strain in Diagonal given Shear Strain for Square Block
- fx $\epsilon_{
 m diagonal} = \left(rac{\eta}{2}
 ight)$
- $\boxed{\textbf{ex}} \ 0.017 = \left(\frac{0.034}{2}\right)$
 - 7) Tensile Strain in Diagonal of Square Block due to Tensile Stress
- $\epsilon_{
 m tensile} = rac{\sigma_{
 m t}}{E_{
 m bar}}$
- $\mathbf{ex} = 0.013636 = \frac{0.15 \text{MPa}}{11 \text{MPa}}$

8) Total Compressive Strain in Diagonal AC of Square Block ABCD 🚰

 $\epsilon_{
m diagonal} = \left(rac{\sigma_{
m t}}{E_{
m bar}}
ight) \cdot (1+ {
m v})$

Open Calculator 🗗

 $oxed{ex} 0.017727 = \left(rac{0.15 ext{MPa}}{11 ext{MPa}}
ight) \cdot (1+0.3)$

9) Total tensile strain in diagonal BD of square block ABCD given modulus of rigidity

 $\epsilon_{
m diagonal} = rac{ au}{2 \cdot G}$

Open Calculator

 $0.017333 = rac{0.52 ext{MPa}}{2 \cdot 15 ext{MPa}}$

10) Total Tensile Strain in Diagonal of Square Block

 $\left| \mathbf{f} \mathbf{x}
ight| \epsilon_{
m diagonal} = \left(rac{\sigma_{
m t}}{
m E_{
m har}}
ight) \cdot (1 + \mathbf{v})
ight|$

Open Calculator 🗗

 $oxed{ex} 0.017727 = \left(rac{0.15 ext{MPa}}{11 ext{MPa}}
ight) \cdot (1+0.3)$

11) Young's Modulus using Modulus of Rigidity 🚰

fx $E=2\cdot G\cdot (1+ extstyle
u)$

Open Calculator

 $\textbf{ex} \ 39 \text{MPa} = 2 \cdot 15 \text{MPa} \cdot (1+0.3)$

Variables Used

- E Young's Modulus Bar (Megapascal)
- E_{bar} Modulus of Elasticity Of Bar (Megapascal)
- **G** Modulus of Rigidity of Bar (Megapascal)
- εdiagonal Tensile Strain In Diagonal
- ε_{tensile} Tensile Strain
- σ_t Tensile Stress on Body (Megapascal)
- σ_{tp} Permissible Tensile Stress (Megapascal)
- v Poisson's Ratio
- η Shear Strain
- τ Shear Stress in Body (Megapascal)

Constants, Functions, Measurements used

- Measurement: Pressure in Megapascal (MPa)

 Pressure Unit Conversion
- Measurement: Stress in Megapascal (MPa)
 Stress Unit Conversion

Check other formula lists

- Direct Strains of Diagonal Formulas
- Elastic Constants Formulas
- Mohr's Circle Formulas
- Principal Stresses and Strains
 Formulas
- Relationship between Stress and Strain Formulas
- Strain Energy Formulas
- Thermal Stress Formulas
- Types of Stresses Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

11/9/2024 | 8:43:26 AM UTC

Please leave your feedback here...

