

Cam and Follower Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

Open Calculator

Open Calculator

Open Calculator

Open Calculator 🗗

Open Calculator

List of 19 Cam and Follower Formulas

Cam and Follower

Follower Motion **G**

1) Condition for Maximum Acceleration of Follower Exhibiting Cycloidal Motion

$$\theta_{
m rotation} = rac{ heta_{
m o}}{4}$$

2) Condition for Maximum Velocity of Follower Exhibiting Cycloidal Motion

$$\left[heta \left[heta_{
m rotation} = rac{ heta_{
m o}}{2}
ight]$$

 $\boxed{\textbf{ex} \left[0.698 \text{rad} = \frac{1.396 \text{rad}}{2}\right]}$

3) Displacement of Follower after Time t for Cycloidal Motion

$$\mathbf{K} d_{\mathrm{follower}} = S \cdot \left(rac{ heta_{\mathrm{rotation}}}{ heta_{\mathrm{o}}} \cdot rac{180}{\pi} - \sin \left(rac{2 \cdot \pi \cdot heta_{\mathrm{rotation}}}{ heta_{\mathrm{o}}}
ight)
ight)$$

 $266.4789 \text{m} = 20 \text{m} \cdot \left(\frac{0.349 \text{rad}}{1.396 \text{rad}} \cdot \frac{180}{\pi} - \sin \left(\frac{2 \cdot \pi \cdot 0.349 \text{rad}}{1.396 \text{rad}} \right) \right)$

4) Displacement of Follower for Circular Arc Cam, there's Contact on Circular Flank

fx
$$d_{\mathrm{follower}} = (\mathrm{r_{\mathrm{Base}}} - \mathrm{r_{1}}) \cdot (1 - \mathrm{cos}(\mathrm{ heta_{\mathrm{turned}}}))$$

200 1017 (100 17 2) (1

ex
$$266.4045$$
m = $(139.45$ m $- 3$ m $) \cdot (1 - \cos(2.8318$ rad $))$

5) Mean Velocity of Follower during Outstroke at Uniform Acceleration

$$V_{
m mean} = rac{S}{t_{
m o}}$$

 $m ex = 386.8173 m/s = rac{20 m}{0.051704 s}$

6) Mean Velocity of Follower during Return Stroke at Uniform Acceleration

Open Calculator

$$\boxed{ 386.8472 \text{m/s} = \frac{20 \text{m}}{0.0517 \text{s}} }$$

7) Peripheral Speed of Projection of Point P' (Projection of Point P on Dia) for SHM of Follower

$$extbf{F}_{ ext{s}} = rac{\pi \cdot ext{S} \cdot \omega}{2 \cdot heta_{ ext{o}}}$$

Open Calculator

ex
$$607.6146 \text{m/s} = \frac{\pi \cdot 20 \text{m} \cdot 27 \text{rad/s}}{2 \cdot 1.396 \text{rad}}$$

8) Peripheral Speed of Projection of Point P on Diameter for SHM of Follower

$$\left[\mathbf{F}_{\mathrm{s}} = rac{\pi \cdot \mathrm{S}}{2 \cdot \mathrm{t_o}}
ight]$$

Open Calculator

$$\boxed{\texttt{ex} \left[607.6111 \text{m/s} = \frac{\pi \cdot 20 \text{m}}{2 \cdot 0.051704 \text{s}} \right]}$$

9) Time Required by Follower for Return Stroke at Uniform Acceleration

fx
$$t_R=rac{ heta_R}{\omega}$$

Ex $0.0517 s=rac{1.3959 rad}{27 rad/s}$

Open Calculator

10) Time Peguired for Follower during O

10) Time Required for Follower during Outstroke for Uniform Acceleration

fx
$$t_{o}=rac{ heta_{o}}{\omega}$$

Open Calculator 🗗

$$0.051704s = \frac{1.396 rad}{27 rad/s}$$

11) Time Required for Out Stroke of Follower when Follower Moves with SHM

$$\mathbf{fx} \left[\mathbf{t_o} = rac{\mathbf{ heta_o}}{\mathbf{\omega}}
ight]$$

Open Calculator

$$0.051704s = \frac{1.396rad}{27rad/s}$$

12) Velocity of Follower after Time t for Cycloidal Motion 🗗

$$\boxed{\mathbf{x}} v = \frac{\omega \cdot S}{\theta_o} \cdot \left(1 - \cos\!\left(\frac{2 \cdot \pi \cdot \theta_{rotation}}{\theta_o}\right)\right) \right]$$

Open Calculator 🗗

$$\boxed{\textbf{886.8195} \text{m/s} = \frac{27 \text{rad/s} \cdot 20 \text{m}}{1.396 \text{rad}} \cdot \left(1 - \cos\left(\frac{2 \cdot \pi \cdot 0.349 \text{rad}}{1.396 \text{rad}}\right)\right)}$$

13) Velocity of Follower for Circular Arc Cam if Contact is on Circular Flank

fx
$$v = \omega \cdot (R - r_1) \cdot \sin(\theta_{turned})$$

Open Calculator

$$= 386.8688 \text{m/s} = 27 \text{rad/s} \cdot (50 \text{m} - 3 \text{m}) \cdot \sin(2.8318 \text{rad})$$

Tangent Cam

14) Condition for Contact of Roller if Straight Flank Merges into Nose Tangent Cam with Roller Follower

fx
$$\theta_1 = \alpha - \phi$$

Open Calculator

$$0.785 \text{rad} = 1.285 \text{rad} - 0.5 \text{rad}$$

15) Displacement of Needle for Tangent Cam with Needle-Bearing Follower

$$extbf{d}_{ ext{needle}} = (ext{r}_1 + ext{r}_{ ext{roller}}) \cdot \left(rac{1 - \cos(heta)}{\cos(heta)}
ight)$$

Open Calculator

ex
$$2.404204 \mathrm{m} = (3\mathrm{m} + 33.37\mathrm{m}) \cdot \left(\frac{1 - \cos(170\mathrm{rad})}{\cos(170\mathrm{rad})}\right)$$

16) Displacement of Roller of Tangent Cam with Roller Follower, when there's Nose Contact

$$\boxed{\mathbf{k}} \mathbf{d}_{\mathrm{roller}} = L + r - r \cdot \cos(\theta_1) - \sqrt{L^2 - r^2 \cdot \left(\sin(\theta_1)\right)^2}$$

Open Calculator

$$6.191531 \text{m} = 33.89 \text{m} + 15.192 \text{m} - 15.192 \text{m} \cdot \cos(0.785 \text{rad}) - \sqrt{\left(33.89 \text{m}\right)^2 - \left(15.192 \text{m}\right)^2 \cdot \left(\sin(0.785 \text{rad})\right)^2}$$

17) Distance between Roller Center and Nose Center of Tangent Cam with Roller Follower

fx
$$m L = r_{
m roller} + r_{
m nose}$$

Open Calculator

$$\mathbf{ex} \ 33.89 \mathrm{m} = 33.37 \mathrm{m} + 0.52 \mathrm{m}$$

18) Velocity of Follower for Roller Follower Tangent Cam if Contact is with Straight Flanks

 $\mathbf{r} = \mathbf{r} \cdot (\mathbf{r}_1 + \mathbf{r}_{\mathrm{roller}}) \cdot rac{\sin(\mathbf{\theta})}{\left(\cos(\mathbf{\theta})
ight)^2}$

Open Calculator 🖸

$$\boxed{ \text{ex} } \ 386.8983 \text{m/s} = 27 \text{rad/s} \cdot (3 \text{m} + 33.37 \text{m}) \cdot \frac{\sin(170 \text{rad})}{\left(\cos(170 \text{rad})\right)^2}$$

19) Velocity of Follower of Roller Follower Tangent Cam for Contact with Nose

$$\mathbf{r} = \mathbf{w} \cdot \mathbf{r} \cdot \left(\sin(\mathbf{\theta}_1) + rac{\mathbf{r} \cdot \sin(2 \cdot \mathbf{\theta}_1)}{2 \cdot \sqrt{\mathbf{L}^2 - \mathbf{r}^2 \cdot \left(\sin(\mathbf{\theta}_1)
ight)^2}}
ight)$$

Open Calculator

$$386.8601 \text{m/s} = 27 \text{rad/s} \cdot 15.192 \text{m} \cdot \left(\sin(0.785 \text{rad}) + \frac{15.192 \text{m} \cdot \sin(2 \cdot 0.785 \text{rad})}{2 \cdot \sqrt{(33.89 \text{m})^2 - (15.192 \text{m})^2 \cdot (\sin(0.785 \text{rad}))^2}} \right)$$

Variables Used

- dfollower Displacement of Follower (Meter)
- dneedle Displacement of Needle (Meter)
- d_{roller} Displacement of Roller (Meter)
- L Distance b/w Roller Centre and Nose Centre (Meter)
- Ps Peripheral Speed (Meter per Second)
- r Distance b/w Cam Center and Nose Center (Meter)
- R Radius of Circular Flank (Meter)
- r₁ Radius of the Base Circle (Meter)
- rBase Base Radius of Truncated Cone (Meter)
- rnose Radius of Nose (Meter)
- r_{roller} Radius of Roller (Meter)
- S Stroke of Follower (Meter)
- to Time Required for the Outstroke (Second)
- **t**_R Time Required for the Return Stroke (Second)
- V Velocity (Meter per Second)
- V_{mean} Mean Velocity (Meter per Second)
- α Angle of Ascent (Radian)
- **0** Angle Turned by Cam from Beginning of Roller (Radian)
- θ_1 Angle Turned by Cam when Roller is at Nose Top (Radian)
- θ_O Angular Displacement of Cam during Out Stroke (Radian)
- θ_R Angular Displacement of Cam during Return Stroke (*Radian*)
- θ_{rotation} Angle through Cam Rotates (Radian)
- θ_{turned} Angle Turned by Cam (Radian)
- Φ Angle Turned by the Cam for Contact of Roller (Radian)
- ω Angular Velocity of Cam (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sin, sin(Angle)

 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Angle in Radian (rad)

 Angle Unit Conversion
- Measurement: Angular Velocity in Radian per Second (rad/s)

 Angular Velocity Unit Conversion

Check other formula lists

Cam and Follower Formulas

- Acceleration of the Follower Formulas
- Maximum Velocity of the Follower Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/30/2024 | 4:08:11 PM UTC

Please leave your feedback here...

