
calculatoratoz.com

unitsconverters.com

Relationship between Stress and Strain Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Relationship between Stress and Strain Formulas

Relationship between Stress and Strain e

1) Factor of Safety
$f \times \mathrm{F} . \mathrm{O} . \mathrm{S}=\frac{\mathrm{U}}{\mathrm{P}}$
ex $4.083333=\frac{49 \mathrm{MPa}}{12 \mathrm{MPa}}$
2) Margin of Safety
$f \mathrm{f}$ M.O.S. $=$ F.O.S -1
ex $3=4-1$
3) Modulus of Elasticity given Compressive Stress
$f \mathbf{f x}=\left(\frac{\sigma_{\mathrm{c}}}{\varepsilon_{\text {compressive }}}\right)$
Open Calculator
ex $64 \mathrm{MPa}=\left(\frac{6.4 \mathrm{MPa}}{0.1}\right)$
4) Modulus of Elasticity given Normal Stress
$\mathrm{fx} \mathrm{E}=\frac{\sigma_{\mathrm{n}}}{\varepsilon_{\text {component }}}$
ex $96 \mathrm{MPa}=\frac{48 \mathrm{MPa}}{0.5}$
5) Modulus of Elasticity given Tensile Stress
$f \mathbf{x} E=\left(\frac{\sigma_{t}}{\varepsilon_{\text {tensile }}}\right)$
ex $5.65 \mathrm{MPa}=\left(\frac{3.39 \mathrm{MPa}}{0.6}\right)$
6) Modulus of Rigidity given Shear Stress
$f \mathrm{fx}=\left(\frac{\tau}{\eta}\right)$
ex $2.857143 \mathrm{MPa}=\left(\frac{5 \mathrm{MPa}}{1.75}\right)$

Strain

7) Compressive Strain given Compressive Stress
$f \mathrm{fx} \varepsilon_{\text {compressive }}=\left(\frac{\sigma_{\mathrm{c}}}{\mathrm{E}}\right)$
Open Calculator
ex $0.8=\left(\frac{6.4 \mathrm{MPa}}{8 \mathrm{MPa}}\right)$
8) Lateral Strain given Decrease in Breadth
$f x \varepsilon_{d}=\frac{\Delta b}{b}$
ex $0.23=\frac{46 \mathrm{~mm}}{200 \mathrm{~mm}}$
9) Lateral Strain given Decrease in Depth
$f \mathrm{f} \varepsilon_{\mathrm{d}}=\frac{\Delta \mathrm{d}}{\mathrm{d}}$
ex $0.43=\frac{43 \mathrm{~mm}}{100 \mathrm{~mm}}$
Open Calculator
10) Lateral Strain using Poisson's Ratio
$f_{x} \varepsilon_{d}=-\left(v \cdot \varepsilon_{\text {longitudinal }}\right)$
Open Calculator
ex $-0.06=-(0.3 \cdot 0.2)$

开
11) Longitudinal Strain

$$
\mathrm{ex} 0.22=\frac{1100 \mathrm{~mm}}{5000 \mathrm{~mm}}
$$

12) Shear Strain if Modulus of Rigidity and Shear Stress
๔
$\mathrm{fx} \eta=\frac{\tau}{\mathrm{G}}$
ex $0.138889=\frac{5 \mathrm{MPa}}{36 \mathrm{MPa}}$
13) Tensile Strain given Modulus of Elasticity
$\mathrm{fx}_{\mathrm{x}}^{\varepsilon_{\text {tensile }}}=\left(\frac{\sigma_{t}}{\mathrm{E}}\right)$
Open Calculator
ex $0.42375=\left(\frac{3.39 \mathrm{MPa}}{8 \mathrm{MPa}}\right)$

Stress

14) Compressive Stress given Compressive Strain
$f \mathrm{f} \sigma_{\mathrm{c}}=\left(\mathrm{E} \cdot \varepsilon_{\text {compressive }}\right)$
Open Calculator
ex $0.8 \mathrm{MPa}=(8 \mathrm{MPa} \cdot 0.1)$

目
15) Normal Stress given Modulus of Elasticity
$\mathrm{fx}_{\mathrm{x}} \sigma_{\mathrm{n}}=\varepsilon_{\text {component }} \cdot \mathrm{E}$

Open Calculator

ex $4 \mathrm{MPa}=0.5 \cdot 8 \mathrm{MPa}$
16) Permissible Stress using Factor of Safety
$f \mathrm{f} P=\frac{\mathrm{U}}{\mathrm{F} . \mathrm{O} \cdot \mathrm{S}}$
Open Calculator
ex $12.25 \mathrm{MPa}=\frac{49 \mathrm{MPa}}{4}$
17) Shear Stress given Shear Strain
$\mathrm{fx}_{\mathrm{x}} \tau=(\mathrm{G} \cdot \eta)$
Open Calculator
ex $63 \mathrm{MPa}=(36 \mathrm{MPa} \cdot 1.75)$
18) Tensile Stress given Modulus of Elasticity
$f \mathbf{f} \sigma_{t}=\left(\mathrm{E} \cdot \varepsilon_{\text {tensile }}\right)$
Open Calculator
ex $4.8 \mathrm{MPa}=(8 \mathrm{MPa} \cdot 0.6)$
19) Ultimate Stress using Factor of Safety
$f \mathrm{f}$ U $=$ F.O.S $\cdot \mathrm{P}$
Open Calculator
ex $48 \mathrm{MPa}=4 \cdot 12 \mathrm{MPa}$

Variables Used

- b Breadth of Component (Millimeter)
- d Depth of Component (Millimeter)
- E Modulus of Elasticity (Megapascal)
- F.O.S Factor of Safety
- G Modulus of Rigidity (Megapascal)
- \mathbf{I}_{0} Initial Length (Millimeter)
- M.O.S. Margin of Safety
- P Permissible Stress (Megapascal)
- U Ultimate Stress (Megapascal)
- $\mathbf{\Delta} \mathbf{b}$ Decrease in Breadth (Millimeter)
- $\Delta \mathbf{d}$ Decrease in Depth (Millimeter)
- ΔL Change in Length of Component (Millimeter)
- $\varepsilon_{\text {component }}$ Strain in Component
- $\varepsilon_{\text {compressive }}$ Compressive Strain
- ε_{d} Lateral Strain
- $\varepsilon_{\text {Iongitudinal }}$ Longitudinal Strain
- $\varepsilon_{\text {Iongitudinal }}$ Longitudinal Strain
- $\varepsilon_{\text {tensile }}$ Tensile Strain
- $\boldsymbol{\sigma}_{\mathbf{c}}$ Compressive Stress (Megapascal)
- $\sigma_{\mathbf{n}}$ Normal Stress (Megapascal)
- $\sigma_{\mathbf{t}}$ Tensile Stress (Megapascal)
- v Poisson's Ratio
- η Shear Strain
- τ Shear Stress (Megapascal)

Constants, Functions, Measurements used

- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Pressure in Megapascal (MPa) Pressure Unit Conversion
- Measurement: Stress in Megapascal (MPa) Stress Unit Conversion

Check other formula lists

- Biaxial Stress Deformation System Formulas $\boxed{\Omega}$
- Direct Strains of Diagonal Formulas
- Elastic Constants Formulas
- Mohr's Circle Formulas
- Principal Stresses and Strains Formulas
- Relationship between Stress and Strain Formulas
- Strain Energy Formulas
- Thermal Stress Formulas
- Types of Stresses Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

