Belt Drive Formulas...

Belt Drive Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 20 Belt Drive Formulas

Belt Drive

1) Angle Made by Belt with Vertical Axis for Cross Belt Drive

$$oxed{ex} 0.523732 \mathrm{rad} = rac{6 \mathrm{m} + 10 \mathrm{m}}{30.55 \mathrm{m}}$$

2) Angle Made by Belt with Vertical Axis for Open Belt Drive

fx
$$\left[lpha=rac{{
m r}_1-{
m r}_2}{{
m x}}
ight]$$

ex
$$0.130933$$
rad = $\frac{10m - 6m}{30.55m}$

3) Angle of Contact for Cross Belt Drive

$$\theta_{
m c} = 180 \cdot rac{\pi}{180} + 2 \cdot lpha$$

$$=$$
 4.187593rad = $180 \cdot \frac{\pi}{180} + 2 \cdot 0.523$ rad

4) Angle of Contact for Open Belt Drive

 $\left| heta_{
m c} = 180 \cdot rac{\pi}{180} - 2 \cdot lpha
ight|$

Open Calculator

ex 2.095593rad = $180 \cdot \frac{\pi}{180} - 2 \cdot 0.523$ rad

5) Centrifugal Tension in Belt

fx $T_{c}=m\cdot v$

Open Calculator

 $= 21 \text{kg} \cdot 3.45689 \text{N} = 21 \text{kg} \cdot 3.450328 \text{m/s}$

6) Cross Belt Drive Length

 $\mathbf{L}_{\mathrm{b}} = \pi \cdot (\mathbf{r}_2 + \mathbf{r}_1) + 2 \cdot \mathbf{x} + rac{(\mathbf{r}_2 + \mathbf{r}_1)^2}{2}$

Open Calculator

ex $119.7452 ext{m} = \pi \cdot (6 ext{m} + 10 ext{m}) + 2 \cdot 30.55 ext{m} + rac{(6 ext{m} + 10 ext{m})^2}{30.55 ext{m}}$

7) Frictional Force in V Belt Drive

 $\mathbf{F}_{\mathrm{f}} = \mathbf{\mu}_{\mathrm{b}} \cdot \mathbf{R} \cdot \cos ec igg(rac{eta}{2}igg)$

Open Calculator 🖸

 $\boxed{ 17.50424 \mathrm{N} = 0.3 \cdot 15 \mathrm{N} \cdot \cos ec \bigg(\frac{0.52 \mathrm{rad}}{2} \bigg) }$

Open Calculator

Open Calculator

Open Calculator

Open Calculator

Open Calculator

8) Initial Tension in Belt

 $\mathbf{T}_{\mathrm{o}} = rac{\mathrm{T_1} + \mathrm{T_2} + 2 \cdot \mathrm{T_c}}{2}$

= 266.5N = $\frac{22$ N + 11N + $2 \cdot 250$ N = 2

9) Length of Belt that Passes over Driver

fx $L_{
m o} = \pi \cdot d_1 \cdot N_{
m d}$

ex $0.201062\mathrm{m} = \pi \cdot 0.12\mathrm{m} \cdot 32\mathrm{rev/min}$

10) Length of Belt that Passes over Follower

fx $L_{
m f} = \pi \cdot N_{
m f} \cdot d_2$

 $0.088488m = \pi \cdot 26 \text{rev/min} \cdot 0.065 \text{m}$

11) Length of Open Belt Drive

 $\mathbf{L'}_{\mathrm{b}} = \pi \cdot (\mathrm{r}_2 + \mathrm{r}_1) + 2 \cdot \mathrm{x} + rac{(\mathrm{r}_1 - \mathrm{r}_2)^2}{r}$

ex $111.8892 \mathrm{m} = \pi \cdot (6 \mathrm{m} + 10 \mathrm{m}) + 2 \cdot 30.55 \mathrm{m} + \frac{(10 \mathrm{m} - 6 \mathrm{m})^2}{30.55 \mathrm{m}}$

fx $m [P_m=3\cdot T_c]$

 $750N = 3 \cdot 250N$

12) Maximum Tension for Transmission of Maximum Power by Belt 🗹

13) Maximum Tension of Belt

fx $P_m = \sigma \cdot b \cdot t$

Open Calculator

Open Calculator 2

14) Normal Reaction between Belt and Sides of Groove

 $ho_{
m R} = rac{
m R}{2 \cdot \sin \left(rac{eta}{2}
ight)}$

15) Power Transmitted by Belt

fx $P = (T_1 - T_2) \cdot v$

Open Calculator

16) Relation between Pitch and Pitch Circle Diameter of Chain Drive

Open Calculator 🗗

 $\mathbf{ex} \boxed{0.478339 \text{m} = 0.05 \text{m} \cdot \cos ec \left(\frac{180 \cdot \frac{\pi}{180}}{30}\right)}$

17) Torque Exerted on Driven Pulley

 $au = (\mathrm{T}_1 - \mathrm{T}_2) \cdot rac{\mathrm{d_f}}{2}$

Open Calculator 🗗

 $\mathbf{ex} \left[0.077 \mathrm{N^*m} = (22\mathrm{N} - 11\mathrm{N}) \cdot rac{0.014\mathrm{m}}{2}
ight]$

18) Torque Exerted on Driving Pulley

 $au = (\mathrm{T}_1 - \mathrm{T}_2) \cdot rac{\mathrm{d}_\mathrm{d}}{2}$

Open Calculator

 $\mathbf{ex} = 0.077 \mathrm{N^*m} = (22 \mathrm{N} - 11 \mathrm{N}) \cdot \frac{0.0140 \mathrm{m}}{2}$

19) Total Percentage Slip in Belt

fx $\left[\mathbf{s} = \mathbf{s}_1 + \mathbf{s}_2
ight]$

Open Calculator 🗗

ex 0.7 = 0.5 + 0.2

20) Velocity for Transmission of Maximum Power by Belt

 $v = \sqrt{rac{P_{
m m}}{3 \cdot {
m m}}}$

Open Calculator

ex $3.450328 {
m m/s} = \sqrt{rac{750 {
m N}}{3 \cdot 21 {
m kg}}}$

Belt Drive Formulas... 7/11

Variables Used

- **b** Belt Width (Meter)
- d₁ Diameter of Driver Pulley (Meter)
- **d**₂ Diameter of Follower Pulley (Meter)
- d_d Diameter of Driver (Meter)
- **d**_f Diameter of Follower (Meter)
- d_p Pitch Circle Diameter of Gear (Meter)
- **F**_f Force of Friction (Newton)
- L_h Length Measurement Belt Drive (Meter)
- L'h Total Length of Belt (Meter)
- Lf Length of Belt Over Follower (Meter)
- Lo Length of Belt Over Driver (Meter)
- m Mass of Belt Per Unit Length (Kilogram)
- N_d Speed of Driver (Revolution per Minute)
- N_f Speed of Follower (Revolution per Minute)
- P Power Transmitted (Kilowatt)
- Pc Pitch of Chain Drive (Meter)
- P_m Maximum Tension of Belt (Newton)
- R Total Reaction in Plane of Groove (Newton)
- r₁ Radius of Larger Pulley (Meter)
- r₂ Radius of Smaller Pulley (Meter)
- R_n Normal Reaction Between Belt And Sides of Groove (Newton)

- S Total Percentage of Slip
- S₁ Slip Between Driver And Belt
- S₂ Slip Between Belt And Follower
- **t** Belt Thickness (Meter)
- T₁ Tension in Tight Side of Belt (Newton)
- T₂ Tension in Slack Side of Belt (Newton)
- T_c Centrifugal Tension of Belt (Newton)
- To Initial Tension of Belt (Newton)
- ts Number of Teeth on Sprocket
- V Velocity of Belt (Meter per Second)
- X Distance Between Centers of Two Pulleys (Meter)
- α Angle Made By Belt With Vertical Axis (Radian)
- β Angle of Groove (Radian)
- θ_c Angle of Contact (Radian)
- μ_b Coefficient of Friction b/w Belt & Sides of Groove
- σ Maximum Safe Stress (Newton per Square Millimeter)
- T Torque Exerted on Pulley (Newton Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: cosec, cosec(Angle)

 The cosecant function is a trigonometric function that is the reciprocal of the sine function
- Function: sec, sec(Angle)

 Secant is a trigonometric function that is defined ratio of the hypotenuse to the shorter side adjacent to an acute angle (in a right-angled triangle); the reciprocal of a cosine.
- Function: sin, sin(Angle)

 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Weight in Kilogram (kg)
 Weight Unit Conversion
- Measurement: Pressure in Newton per Square Millimeter (N/mm²)
 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Power in Kilowatt (kW)

 Power Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion

Belt Drive Formulas... 10/11

Measurement: Angle in Radian (rad)
 Angle Unit Conversion

- Measurement: Frequency in Revolution per Minute (rev/min)

 Frequency Unit Conversion
- Measurement: Torque in Newton Meter (N*m)

 Torque Unit Conversion

Check other formula lists

Belt Drive Formulas

Velocity Ratio Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/30/2024 | 3:39:13 PM UTC

Please leave your feedback here...

