
calculatoratoz.com

unitsconverters.com

Design of Helical Gears Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 55 Design of Helical Gears Formulas

Design of Helical Gears ©

Core Design Parameters

1) Actual Number of Teeth on Gear given Virtual Number of Teeth
$f \mathbf{x} z=(\cos (\psi))^{3} \cdot z^{\prime}$
Open Calculator ©
ex $40.19952=\left(\cos \left(25^{\circ}\right)\right)^{3} \cdot 54$
2) Addendum Circle Diameter of Gear \checkmark
$f \mathrm{f} \mathrm{d}_{\mathrm{a}}=\mathrm{m}_{\mathrm{n}} \cdot\left(\left(\frac{\mathrm{z}}{\cos (\psi)}\right)+2\right)$
Open Calculator
ex $128.4749 \mathrm{~mm}=3 \mathrm{~mm} \cdot\left(\left(\frac{37}{\cos \left(25^{\circ}\right)}\right)+2\right)$
3) Addendum Circle Diameter of Gear given Pitch Circle Diameter
$f \mathrm{f} \mathrm{d}_{\mathrm{a}}=2 \cdot \mathrm{~h}_{\mathrm{a}}+\mathrm{d}$
ex $126 \mathrm{~mm}=2 \cdot 4 \mathrm{~mm}+118 \mathrm{~mm}$
4) Addendum of Gear given Addendum Circle Diameter
$f \mathrm{f} \mathrm{h}_{\mathrm{a}}=\frac{\mathrm{d}_{\mathrm{a}}-\mathrm{d}}{2}$
$\mathrm{ex} 10 \mathrm{~mm}=\frac{138 \mathrm{~mm}-118 \mathrm{~mm}}{2}$
5) Angular Velocity of Gear given Speed Ratio
$f \mathrm{x} \mathrm{n}_{\mathrm{g}}=\frac{\mathrm{n}_{\mathrm{p}}}{\mathrm{i}}$
ex $8.272727 \mathrm{rad} / \mathrm{s}=\frac{18.2 \mathrm{rad} / \mathrm{s}}{2.2}$
Open Calculator 〔
6) Angular Velocity of Pinion given Speed Ratio
$f \mathbf{x} \mathrm{n}_{\mathrm{p}}=\mathrm{i} \cdot \mathrm{n}_{\mathrm{g}}$
Open Calculator
ex $18.04 \mathrm{rad} / \mathrm{s}=2.2 \cdot 8.2 \mathrm{rad} / \mathrm{s}$
7) Center to Center distance between Two Gears
$f_{\mathrm{x}} \mathrm{a}_{\mathrm{c}}=\mathrm{m}_{\mathrm{n}} \cdot \frac{\mathrm{z}_{1}+\mathrm{z}_{2}}{2 \cdot \cos (\psi)}$
ex $99.30401 \mathrm{~mm}=3 \mathrm{~mm} \cdot \frac{18+42}{2 \cdot \cos \left(25^{\circ}\right)}$
8) Dedendum Circle Diameter of Gear given Pitch Circle Diameter
$f \mathrm{f} \mathrm{d}_{\mathrm{f}}=\mathrm{d}-2 \cdot \mathrm{~d}_{\mathrm{h}}$
Open Calculator
ex $108 \mathrm{~mm}=118 \mathrm{~mm}-2 \cdot 5 \mathrm{~mm}$
9) Normal Module of Helical Gear
$f \times \mathrm{m}_{\mathrm{n}}=\mathrm{m} \cdot \cos (\psi)$
Open Calculator
ex $3.081446 \mathrm{~mm}=3.4 \mathrm{~mm} \cdot \cos \left(25^{\circ}\right)$
10) Normal Module of Helical Gear given Addendum Circle Diameter
$f \mathbf{x} \mathrm{~m}_{\mathrm{n}}=\frac{\mathrm{d}_{\mathrm{a}}}{\frac{\mathrm{z}}{\cos (\psi)}+2}$
Open Calculator
ex $3.222418 \mathrm{~mm}=\frac{138 \mathrm{~mm}}{\frac{37}{\cos \left(25^{\circ}\right)}+2}$
11) Normal Module of Helical Gear given Center to Center Distance between Two Gears
$f \mathbf{f x} \mathrm{~m}_{\mathrm{n}}=\mathrm{a}_{\mathrm{c}} \cdot \frac{2 \cdot \cos (\psi)}{\mathrm{z}_{1}+\mathrm{z}_{2}}$
Open Calculator
$\mathrm{ex} 2.999879 \mathrm{~mm}=99.3 \mathrm{~mm} \cdot \frac{2 \cdot \cos \left(25^{\circ}\right)}{18+42}$
12) Normal Module of Helical Gear given Pitch Circle Diameter

Open Calculator
ex $2.890387 \mathrm{~mm}=118 \mathrm{~mm} \cdot \frac{\cos \left(25^{\circ}\right)}{37}$
13) Normal Module of Helical Gear given Virtual Number of Teeth
$f \mathbf{x} \mathrm{~m}_{\mathrm{n}}=\frac{\mathrm{d}}{\mathrm{z}^{\prime}} \cdot\left(\cos (\psi)^{2}\right)$
Open Calculator
ex $1.794898 \mathrm{~mm}=\frac{118 \mathrm{~mm}}{54} \cdot\left(\cos \left(25^{\circ}\right)^{2}\right)$
14) Number of Teeth on First Gear given Center to Center Distance between Two Gears
$f \times z_{1}=a_{c} \cdot \frac{2 \cdot \cos (\psi)}{m_{n}}-z_{2}$
ex $17.99758=99.3 \mathrm{~mm} \cdot \frac{2 \cdot \cos \left(25^{\circ}\right)}{3 \mathrm{~mm}}-42$
15) Number of Teeth on Gear given Addendum Circle Diameter
$\mathbf{f x} \mathrm{z}=\left(\frac{\mathrm{d}_{\mathrm{a}}}{\mathrm{m}_{\mathrm{n}}}-2\right) \cdot \cos (\psi)$
ex $39.87754=\left(\frac{138 \mathrm{~mm}}{3 \mathrm{~mm}}-2\right) \cdot \cos \left(25^{\circ}\right)$
16) Number of Teeth on Gear given Pitch Circle Diameter
$\mathbf{f x}_{\mathrm{x}}^{\mathrm{z}=\mathrm{d} \cdot \frac{\cos (\psi)}{\mathrm{m}_{\mathrm{n}}}}$
Open Calculator
ex $35.64811=118 \mathrm{~mm} \cdot \frac{\cos \left(25^{\circ}\right)}{3 \mathrm{~mm}}$
17) Number of Teeth on Helical Gear given Speed Ratio for Helical Gears \leftrightarrow
$f \mathrm{x} z=\mathrm{Z}_{\mathrm{p}} \cdot \mathrm{i}$
Open Calculator
ex $44=20 \cdot 2.2$
18) Number of Teeth on Pinion given Speed Ratio
$f \mathrm{x} \mathrm{Z}_{\mathrm{p}}=\frac{\mathrm{z}}{\mathrm{i}}$
Open Calculator
ex $16.81818=\frac{37}{2.2}$
19) Number of Teeth on Second Helical Gear given Center to Center Distance between Two Gears

$$
f \mathrm{x} \mathrm{z}_{2}=\mathrm{a}_{\mathrm{c}} \cdot \frac{2 \cdot \cos (\psi)}{\mathrm{m}_{\mathrm{n}}}-\mathrm{z}_{1}
$$

ex $41.99758=99.3 \mathrm{~mm} \cdot \frac{2 \cdot \cos \left(25^{\circ}\right)}{3 \mathrm{~mm}}-18$
20) Pitch Circle Diameter of Gear given Addendum Circle Diameter
$f \mathrm{f} d=\mathrm{d}_{\mathrm{a}}-2 \cdot \mathrm{~h}_{\mathrm{a}}$
Open Calculator
ex $130 \mathrm{~mm}=138 \mathrm{~mm}-2 \cdot 4 \mathrm{~mm}$
21) Pitch Circle Diameter of Gear given Dedendum Circle Diameter
$f \mathrm{fx}=\mathrm{d}_{\mathrm{f}}+2 \cdot \mathrm{~d}_{\mathrm{h}}$
ex $136 \mathrm{~mm}=126 \mathrm{~mm}+2 \cdot 5 \mathrm{~mm}$
22) Pitch Circle Diameter of Gear given Radius of Curvature at Point
$\mathbf{f x} \mathrm{d}=2 \cdot \mathrm{r}^{\prime} \cdot(\cos (\psi))^{2}$
Open Calculator
ex $118.2807 \mathrm{~mm}=2 \cdot 72 \mathrm{~mm} \cdot\left(\cos \left(25^{\circ}\right)\right)^{2}$
23) Pitch Circle Diameter of Helical Gear
$\mathrm{fx} \mathrm{d}=\mathrm{z} \cdot \frac{\mathrm{m}_{\mathrm{n}}}{\cos (\psi)}$
Open Calculator
ex $122.4749 \mathrm{~mm}=37 \cdot \frac{3 \mathrm{~mm}}{\cos \left(25^{\circ}\right)}$
24) Speed Ratio for Helical Gears
$\mathrm{fx} \mathrm{i}=\frac{\mathrm{n}_{\mathrm{p}}}{\mathrm{n}_{\mathrm{g}}}$
Open Calculator
ex $2.219512=\frac{18.2 \mathrm{rad} / \mathrm{s}}{8.2 \mathrm{rad} / \mathrm{s}}$
25) Transverse Module of Helical Gear given Normal Module
$\mathrm{fx} \mathrm{m}=\frac{\mathrm{m}_{\mathrm{n}}}{\cos (\psi)}$
Open Calculator
ex $3.310134 \mathrm{~mm}=\frac{3 \mathrm{~mm}}{\cos \left(25^{\circ}\right)}$
26) Transverse Module of Helical Gear given Transverse Diametrical Pitch
fx $m=\frac{1}{P}$

Open Calculator
ex $3.448276 \mathrm{~mm}=\frac{1}{0.29 \mathrm{~mm}^{-1}}$
27) Virtual Number of Teeth on Helical Gear
$f \mathbf{x} \mathrm{z}^{\prime}=2 \cdot \pi \cdot \frac{\mathrm{r}_{\mathrm{vh}}}{\mathrm{P}_{\mathrm{N}}}$
ex $20.94395=2 \cdot \pi \cdot \frac{32 \mathrm{~mm}}{9.6 \mathrm{~mm}}$
28) Virtual Number of Teeth on Helical Gear given Actual Number of Teeth E
$f \mathbf{x} z^{\prime}=\frac{z}{(\cos (\psi))^{3}}$

$$
\text { ex } 49.70208=\frac{37}{\left(\cos \left(25^{\circ}\right)\right)^{3}}
$$

Helix Geometry ©

29) Axial Pitch of Helical Gear given Helix Angle \leftrightarrows
$\mathrm{fx} \mathrm{p}_{\mathrm{a}}=\frac{\mathrm{p}}{\tan (\psi)}$
ex $22.90333 \mathrm{~mm}=\frac{10.68 \mathrm{~mm}}{\tan \left(25^{\circ}\right)}$
30) Helix Angle of Helical Gear given Actual and Virtual Number of Teeth E
$f_{x} \psi=a \cos \left(\left(\frac{z}{z^{\prime}}\right)^{\frac{1}{3}}\right)$
ex $28.16458^{\circ}=a \cos \left(\left(\frac{37}{54}\right)^{\frac{1}{3}}\right)$
31) Helix Angle of Helical Gear given Addendum Circle Diameter
$\mathrm{fx} \psi=a \cos \left(\frac{\mathrm{z}}{\frac{\mathrm{d}_{\mathrm{a}}}{\mathrm{m}_{\mathrm{n}}}-2}\right)$

Open Calculator

ex $32.76376^{\circ}=a \cos \left(\frac{37}{\frac{138 \mathrm{~mm}}{3 \mathrm{~mm}}-2}\right)$
32) Helix Angle of Helical Gear given Axial Pitch
$\mathrm{fx}_{\mathrm{x}} \psi=a \tan \left(\frac{\mathrm{p}}{\mathrm{p}_{\mathrm{a}}}\right)$
Open Calculator
ex $25.59087^{\circ}=a \tan \left(\frac{10.68 \mathrm{~mm}}{22.3 \mathrm{~mm}}\right)$
33) Helix Angle of Helical Gear given Center to Center Distance between Two Gears
$\mathrm{fx}_{\mathrm{x}} \psi=a \cos \left(\mathrm{~m}_{\mathrm{n}} \cdot \frac{\mathrm{z}_{1}+\mathrm{z}_{2}}{2 \cdot \mathrm{a}_{\mathrm{c}}}\right)$
Open Calculator 〔
ex $24.99503^{\circ}=a \cos \left(3 \mathrm{~mm} \cdot \frac{18+42}{2 \cdot 99.3 \mathrm{~mm}}\right)$
34) Helix Angle of Helical Gear given Normal Circular Pitch
$f \mathrm{x} \psi=a \cos \left(\frac{\mathrm{P}_{\mathrm{N}}}{\mathrm{p}}\right)$
Open Calculator
ex $25.98923^{\circ}=a \cos \left(\frac{9.6 \mathrm{~mm}}{10.68 \mathrm{~mm}}\right)$
35) Helix Angle of Helical Gear given Normal Module
$\mathrm{fx} \psi=a \cos \left(\frac{\mathrm{~m}_{\mathrm{n}}}{\mathrm{m}}\right)$
Open Calculator
ex $28.07249^{\circ}=a \cos \left(\frac{3 \mathrm{~mm}}{3.4 \mathrm{~mm}}\right)$
36) Helix Angle of Helical Gear given Pitch Circle Diameter
$\mathrm{fx} \psi=a \cos \left(\mathrm{z} \cdot \frac{\mathrm{m}_{\mathrm{n}}}{\mathrm{d}}\right)$
Open Calculator
ex $19.83427^{\circ}=a \cos \left(37 \cdot \frac{3 \mathrm{~mm}}{118 \mathrm{~mm}}\right)$
37) Helix Angle of Helical Gear given Pressure Angle
$f \mathrm{x} \psi=a \cos \left(\frac{\tan \left(\alpha_{\mathrm{n}}\right)}{\tan (\alpha)}\right)$
Open Calculator
ex $25.07509^{\circ}=a \cos \left(\frac{\tan \left(20.1^{\circ}\right)}{\tan \left(22^{\circ}\right)}\right)$
38) Helix Angle of Helical Gear given Radius of Curvature at Point
$f \mathrm{x} \psi=\sqrt{a \cos \left(\frac{\mathrm{~d}}{2 \cdot r^{\prime}}\right)}$
Open Calculator
$\operatorname{ex} 44.76246^{\circ}=\sqrt{a \cos \left(\frac{118 \mathrm{~mm}}{2 \cdot 72 \mathrm{~mm}}\right)}$
39) Helix Angle of Helical Gear given Virtual Number of Teeth
$f_{\mathrm{x}} \psi=a \cos \left(\left(\frac{\mathrm{~d}}{\mathrm{~m}_{\mathrm{n}} \cdot \mathrm{z}^{\prime}}\right)^{\frac{1}{2}}\right)$
Open Calculator
ex $31.40991^{\circ}=a \cos \left(\left(\frac{118 \mathrm{~mm}}{3 \mathrm{~mm} \cdot 54}\right)^{\frac{1}{2}}\right)$
40) Normal Circular Pitch of Helical Gear
$f x \mathrm{P}_{\mathrm{N}}=\mathrm{p} \cdot \cos (\psi)$
Open Calculator
ex $9.679367 \mathrm{~mm}=10.68 \mathrm{~mm} \cdot \cos \left(25^{\circ}\right)$
41) Normal Circular Pitch of Helical Gear given Virtual Number of Teeth
$\mathrm{fx}_{\mathrm{x}} \mathrm{P}_{\mathrm{N}}=2 \cdot \pi \cdot \frac{\mathrm{r}_{\mathrm{vh}}}{\mathrm{z}^{\prime}}$
Open Calculator
ex $3.723369 \mathrm{~mm}=2 \cdot \pi \cdot \frac{32 \mathrm{~mm}}{54}$
42) Normal Pressure Angle of Helical Gear given Helix Angle
$\mathrm{fx} \alpha_{\mathrm{n}}=a \tan (\tan (\alpha) \cdot \cos (\psi))$
Open Calculator
ex $20.11132^{\circ}=a \tan \left(\tan \left(22^{\circ}\right) \cdot \cos \left(25^{\circ}\right)\right)$
43) Pitch Circular Diameter of Gear given Radius of Curvature
$f \mathbf{x} \mathrm{~d}^{\prime}=2 \cdot \mathrm{r}^{\prime}$
Open Calculator
ex $144 \mathrm{~mm}=2 \cdot 72 \mathrm{~mm}$
44) Pitch Circular Diameter of Gear given Virtual Gear
$\mathrm{fx} \mathrm{d}=2 \cdot \mathrm{r}^{\prime} \cdot(\cos (\psi))^{2}$
Open Calculator
ex $118.2807 \mathrm{~mm}=2 \cdot 72 \mathrm{~mm} \cdot\left(\cos \left(25^{\circ}\right)\right)^{2}$
45) Pitch Circular Diameter of Gear given Virtual Number of Teeth
$\mathrm{fx} \mathrm{d}=\mathrm{m}_{\mathrm{n}} \cdot \mathrm{z}^{\prime} \cdot\left(\cos (\psi)^{2}\right)$
Open Calculator
ex $133.0658 \mathrm{~mm}=3 \mathrm{~mm} \cdot 54 \cdot\left(\cos \left(25^{\circ}\right)^{2}\right)$
46) Pitch of Helical Gear given Axial Pitch
$\mathrm{fx} \mathrm{p}=\mathrm{p}_{\mathrm{a}} \cdot \tan (\psi)$
ex $10.39866 \mathrm{~mm}=22.3 \mathrm{~mm} \cdot \tan \left(25^{\circ}\right)$
47) Pitch of Helical Gear given Normal Circular Pitch
$\mathrm{fx} \mathrm{p}=\frac{\mathrm{P}_{\mathrm{N}}}{\cos (\psi)}$
ex $10.59243 \mathrm{~mm}=\frac{9.6 \mathrm{~mm}}{\cos \left(25^{\circ}\right)}$
48) Radius of Curvature at Point on Helical Gear
$f \mathbf{x} r^{\prime}=\frac{\mathrm{a}^{2}}{\mathrm{~b}}$
Open Calculator
ex $69.13636 \mathrm{~mm}=\frac{(19.5 \mathrm{~mm})^{2}}{5.5 \mathrm{~mm}}$
49) Radius of Curvature at Point on Virtual Gear
$f \mathbf{f x} \mathrm{r}^{\prime}=\frac{\mathrm{d}}{2 \cdot(\cos (\psi))^{2}}$
ex $71.82913 \mathrm{~mm}=\frac{118 \mathrm{~mm}}{2 \cdot\left(\cos \left(25^{\circ}\right)\right)^{2}}$
50) Radius of Curvature of Virtual Gear given Pitch Circular Diameter
$\mathrm{fx} \mathrm{r}^{\prime}=\frac{\mathrm{d}^{\prime}}{2}$
Open Calculator
ex $71.5 \mathrm{~mm}=\frac{143 \mathrm{~mm}}{2}$
51) Radius of Curvature of Virtual Gear given Virtual Number of Teeth
$f \mathrm{x} \mathrm{r}_{\mathrm{vh}}=\mathrm{z}^{\prime} \cdot \frac{\mathrm{P}_{\mathrm{N}}}{2 \cdot \pi}$
Open Calculator
ex $82.50592 \mathrm{~mm}=54 \cdot \frac{9.6 \mathrm{~mm}}{2 \cdot \pi}$
52) Semi Major Axis of Elliptical Profile given Radius of Curvature at Point U
$f x a=\sqrt{r^{\prime} \cdot b}$
Open Calculator
ex $19.89975 \mathrm{~mm}=\sqrt{72 \mathrm{~mm} \cdot 5.5 \mathrm{~mm}}$
53) Semi Minor Axis of Elliptical Profile given Radius of Curvature at Point E
$f \mathrm{f} b=\frac{\mathrm{a}^{2}}{\mathrm{r}^{\prime}}$
Open Calculator
ex $5.28125 \mathrm{~mm}=\frac{(19.5 \mathrm{~mm})^{2}}{72 \mathrm{~mm}}$
54) Transverse Diametrical Pitch of Helical Gear given Transverse Module E
$f \mathrm{fx}=\frac{1}{\mathrm{~m}}$
Open Calculator
ex $0.294118 \mathrm{~mm}^{-1}=\frac{1}{3.4 \mathrm{~mm}}$
目
© calculatoratoz.com. A softusvista inc. venture!
55) Transverse Pressure Angle of Helical Gear given Helix Angle
$f \mathrm{fx} \alpha=a \tan \left(\frac{\tan \left(\alpha_{\mathrm{n}}\right)}{\cos (\psi)}\right)$
ex $21.98782^{\circ}=a \tan \left(\frac{\tan \left(20.1^{\circ}\right)}{\cos \left(25^{\circ}\right)}\right)$

Variables Used

- a Semi Major Axis of Helical Gear Teeth (Millimeter)
- $\mathbf{a}_{\mathbf{c}}$ Center to Center Distance of Helical Gears (Millimeter)
- b Semi Minor Axis of Helical Gear Teeth (Millimeter)
- d Diameter of Pitch Circle of Helical Gear (Millimeter)
- d' Pitch Circular Diameter of Helical Virtual Gear (Millimeter)
- $\mathbf{d}_{\mathbf{a}}$ Addendum Circle Diameter of Helical Gear (Millimeter)
- $\mathbf{d}_{\mathbf{f}}$ Dedendum Circle Diameter of Helical Gear (Millimeter)
- $\mathbf{d}_{\mathbf{h}}$ Dedendum of Helical Gear (Millimeter)
- $\mathbf{h}_{\mathbf{a}}$ Addendum of Helical Gear (Millimeter)
- i Helical Gear Speed Ratio
- m Transverse Module of Helical Gear (Millimeter)
- $\mathbf{m}_{\mathbf{n}}$ Normal Module of Helical Gear (Millimeter)
- $\mathbf{n}_{\mathbf{g}}$ Speed of Helical Gear (Radian per Second)
- $\mathbf{n}_{\mathbf{p}}$ Speed of Pinion Helical Gear (Radian per Second)
- p Pitch of Helical Gear (Millimeter)
- P Transverse Diametrical Pitch of Helical Gear (1 per Millimeter)
- $\mathbf{p}_{\mathbf{a}}$ Axial Pitch of Helical Gear (Millimeter)
- $\mathbf{P}_{\mathbf{N}}$ Normal Circular Pitch of Helical Gear (Millimeter)
- \mathbf{r}^{\prime} Radius of Curvature of Helical Gear (Millimeter)
- $\mathbf{r}_{\mathbf{v h}}$ Virtual Pitch Circle Radius for Helical Gear (Millimeter)
- z Number of Teeth on Helical Gear
- z' Virtual Number of Teeth on Helical Gear
- $\mathbf{z}_{\mathbf{1}}$ Number of Teeth on 1 st Helical Gear
- $\mathbf{Z}_{\mathbf{2}}$ Number of Teeth on 2nd Helical Gear
- $\mathbf{Z}_{\mathbf{p}}$ Number of Teeth on Helical Pinion
- α Transverse Pressure Angle of Helical Gear (Degree)
- $\boldsymbol{\alpha}_{\mathbf{n}}$ Normal Pressure Angle of Helical Gear (Degree)
- $\boldsymbol{\Psi}$ Helix Angle of Helical Gear (Degree)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: acos, acos(Number)

The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.

- Function: atan, atan(Number)

Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.

- Function: cos, cos(Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Function: tan, tan(Angle)

The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Angular Velocity in Radian per Second (rad/s) Angular Velocity Unit Conversion
- Measurement: Reciprocal Length in 1 per Millimeter (mm^{-1}) Reciprocal Length Unit Conversion

Check other formula lists

- Design of Bevel Gears Formulas
- Design of Helical Gears Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

