

1/7

Heat Flow in Welded Joints Formulas

Calculators!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Heat Flow in Welded Joints Formulas

()

3/7

10) Thermal Conductivity of Base Metal using given Cooling Rate (thick plates)

$$\mathbf{fx} \mathbf{k} = \frac{\mathbf{R} \cdot \mathbf{H}_{net}}{2 \cdot \pi \cdot \left(\left(\mathbf{T}_{c} - \mathbf{t}_{a} \right)^{2} \right)}$$

$$\mathbf{ex} 10.18W/(m^{*}K) = \frac{13.71165^{\circ}C/s \cdot 1000J/mm}{2 \cdot \pi \cdot \left((500^{\circ}C - 37^{\circ}C)^{2} \right)}$$

11) Thermal Conductivity of Base Metal using given Cooling Rate (thin plates)

$$\mathbb{R} = \frac{R_{c}}{2 \cdot \pi \cdot \rho \cdot Q_{c} \cdot \left(\left(\frac{t}{H_{net}}\right)^{2}\right) \cdot \left((T_{c} - t_{a})^{3}\right)}$$

$$\mathbb{R} = \frac{0.66 \circ C/s}{2 \cdot \pi \cdot \rho \cdot Q_{c} \cdot \left(\left(\frac{t}{H_{net}}\right)^{2}\right) \cdot \left((T_{c} - t_{a})^{3}\right)}$$

$$\mathbb{R} = \frac{0.66 \circ C/s}{2 \cdot \pi \cdot 997 \text{kg/m}^{3} \cdot 4.184 \text{kJ/kg}^{*} \text{K} \cdot \left(\left(\frac{5\text{mm}}{1000\text{J/mm}}\right)^{2}\right) \cdot \left((500 \circ \text{C} - 37 \circ \text{C})^{3}\right)}$$

$$\mathbb{R} = H_{net} \cdot \sqrt{\frac{R}{2 \cdot \pi \cdot k \cdot \rho \cdot Q_{c} \cdot \left((T_{c} - t_{a})^{3}\right)}}$$

$$\mathbb{R} = 22.75444 \text{ mm} = 1000 \text{J/mm} \cdot \sqrt{\frac{13.71165 \circ \text{C/s}}{2 \cdot \pi \cdot 10.18 \text{W/(m}^{*} \text{K}) \cdot 997 \text{kg/m}^{3} \cdot 4.184 \text{kJ/kg}^{*} \text{K} \cdot \left((500 \circ \text{C} - 37 \circ \text{C})^{3}\right)}}$$

$$\mathbb{R} = \tau \cdot \sqrt{\frac{H_{net}}{(T_{c} - t_{a}) \cdot \rho \cdot Q_{c}}}}$$

$$\mathbb{P} = \frac{1000 \text{J/mm} \cdot \sqrt{\frac{13.71165 \circ \text{C/s}}{2 \cdot \pi \cdot 10.18 \text{W/(m}^{*} \text{K}) \cdot 997 \text{kg/m}^{3} \cdot 4.184 \text{kJ/kg}^{*} \text{K} \cdot \left((500 \circ \text{C} - 37 \circ \text{C})^{3}\right)}}$$

$$\text{ex} \ 14.02998 \text{mm} = 0.616582 \cdot \sqrt{\frac{1000 \text{J/mm}}{(500^\circ \text{C} - 37^\circ \text{C}) \cdot 997 \text{kg/m}^3 \cdot 4.184 \text{kJ/kg}^* \text{K}} }$$

Open Calculator

Variables Used

- h Thickness of the Base Metal (Millimeter)
- Hnet Net Heat Supplied Per Unit Length (Joule per Millimeter)
- **k** Thermal Conductivity (Watt per Meter per K)
- Q_c Specific Heat Capacity (Kilojoule per Kilogram per K)
- Qnet Net Heat Supplied (Joule)
- R Cooling Rate of Thick Plate (Celsius per Second)
- R_c Cooling Rate of Thin Plate (Celsius per Second)
- t Thickness of Filler Metal (Millimeter)
- ta Ambient Temperature (Celsius)
- T_c Temperature for Cooling Rate (Celsius)
- T_m Melting Temperature of Base Metal (Celsius)
- Tp Peak Temperature Reached at Some Distance (Celsius)
- T_v Temperature Reached at Some Distance (Celsius)
- **y** Distance from the Fusion Boundary (Millimeter)
- Z Thickness (Millimeter)
- p Density of Electrode (Kilogram per Cubic Meter)
- ρ_m Density of Metal (Kilogram per Cubic Meter)
- T Relative Plate Thickness Factor

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: e, 2.71828182845904523536028747135266249 Napier's constant
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Temperature in Celsius (°C) Temperature Unit Conversion
- Measurement: Energy in Joule (J) Energy Unit Conversion
- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K)) Thermal Conductivity Unit Conversion
- Measurement: Specific Heat Capacity in Kilojoule per Kilogram per K (kJ/kg*K) Specific Heat Capacity Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³) Density Unit Conversion
- Measurement: Rate of Temperature Change in Celsius per Second (°C/s) Rate of Temperature Change Unit Conversion
- Measurement: Energy per Unit Length in Joule per Millimeter (J/mm) Energy per Unit Length Unit Conversion

Check other formula lists

- Distortion in Weldments Formulas
- Heat Flow in Welded Joints Formulas

Feel free to SHARE this document with your friends!

Heat Input in Welding Formulas

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/19/2024 | 6:59:23 AM UTC

Please leave your feedback here ...

