

Distortion in Weldments Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 25 Distortion in Weldments Formulas

Distortion in Weldments

Angular Distortion

1) Angular Change when there is Maximum Distortion of Fillet Welds

$$\phi = rac{\delta_{
m max}}{0.25 \cdot L}$$

 $\boxed{1.2\mathrm{rad} = \frac{1.5\mathrm{mm}}{0.25 \cdot 5\mathrm{mm}}}$

2) Angular Distortion at x of Fillet Welds

Open Calculator 🗗

Open Calculator

Open Calculator

$$\boxed{ 0.54 \mathrm{mm} = 5 \mathrm{mm} \cdot \left(0.25 \cdot 1.2 \mathrm{rad} - 1.2 \mathrm{rad} \cdot \left(\frac{0.5 \mathrm{mm}}{5 \mathrm{mm}} - 0.5 \right)^2 \right) }$$

3) Length of Span for Maximum Angular Distortion of Fillet Welds

$$ext{L} = rac{\delta_{ ext{max}}}{0.25 \cdot \phi}$$

 $\texttt{ex} \ \texttt{5mm} = \frac{1.5 \text{mm}}{0.25 \cdot 1.2 \text{rad}}$

4) Maximum Angular Distortion of Fillet Welds

fx $\delta_{
m max} = 0.25 \cdot \phi \cdot {
m L}$

Open Calculator 🚰

- $ex 1.5mm = 0.25 \cdot 1.2rad \cdot 5mm$
- 5) Rigidity of Fillet Welds
- $m R = rac{E \cdot p_{tb}^3}{12 + \left(1 oldsymbol{
 u}^2
 ight)}$

Open Calculator

Butt Joints 🚰

6) Cross-sectional area of weld for given transverse shrinkage in butt joints

 $\mathbf{K} \mathbf{A}_{\mathrm{w}} = rac{\mathbf{p}_{\mathrm{tb}} \cdot (\mathbf{S}_{\mathrm{b}} - 1.27 \cdot \mathbf{d})}{5.08}$

Open Calculator

 $= \frac{802.87 \text{mm} \cdot (0.365 \text{mm} - 1.27 \cdot 0.26 \text{mm})}{5.08}$

7) Degree of Restraint (Butt joints)

 $\mathbf{k}_{\mathrm{s}} = \left(rac{1000}{86} \cdot \left(rac{\mathrm{S}}{\mathrm{s}} - 1
ight)
ight)^{rac{1}{0.87}}$

Open Calculator 🗗

 $\boxed{ 647.3872 = \left(\frac{1000}{86} \cdot \left(\frac{100 \mathrm{mm}}{4 \mathrm{mm}} - 1 \right) \right)^{\frac{1}{0.87}} }$

8) Depth of First V-groove for Minimum Distortion of Butt Joint

fx $egin{aligned} \mathbf{f_1} = rac{0.62 \cdot \mathbf{t_2} + 0.12 \cdot \mathbf{t_3}}{0.38} \end{aligned}$

Open Calculator

9) Depth of Last V-groove for Minimum Distortion of Butt Joint

fx $t_2=rac{0.38\cdot ext{t}_1-0.12\cdot ext{t}_3}{0.62}$

Open Calculator 🗗

 $\mathbf{ex} \left[2.597097 \mathrm{mm} = rac{0.38 \cdot 6.29 \mathrm{mm} - 0.12 \cdot 6.5 \mathrm{mm}}{0.62}
ight]$

10) Depth of Root Face for Minimum Distortion of Butt Joint

 $\mathbf{t}_3 = rac{0.38 \cdot \mathrm{t}_1 - 0.62 \cdot \mathrm{t}_2}{0.12}$

Open Calculator 🗗

 $= \frac{0.38 \cdot 6.29 \text{mm} - 0.62 \cdot 2.6 \text{mm}}{0.12}$

11) Metal Deposited in First Pass of Welding given Transverse Shrinkage

fx
$$\left[\mathrm{w}_0 = rac{\mathrm{w}}{10^{rac{\mathrm{S_t} - \mathrm{S_0}}{\mathrm{b}}}}
ight]$$

Open Calculator 🚰

 $ext{ex} 4.99 ext{g} = rac{5.14064 ext{g}}{10^{rac{5.30 ext{mm} - 2.20 ext{mm}}{0.24}}}$

12) Plate Thickness for given Transverse Shrinkage in Butt Joints

 $p_{
m tb} = rac{5.08 \cdot {
m A_w}}{{
m S_b} - (1.27 \cdot {
m d})}$

Open Calculator

 $\mathbf{ex} \left[802.8736 \mathrm{mm} = rac{5.08 \cdot 5.5 \mathrm{mm}^2}{0.365 \mathrm{mm} - (1.27 \cdot 0.26 \mathrm{mm})}
ight]$

13) Root Opening given Transverse Shrinkage

Open Calculator

 $extbf{ex} 0.26 ext{mm} = rac{0.365 ext{mm} - 5.08 \cdot \left(rac{5.5 ext{mm}^2}{802.87 ext{mm}}
ight)}{1.27}$

14) Shrinkage of Unrestrained Joint from given Shrinkage of Restrained Butt Joint

 $extbf{K} = ext{S} \cdot (1 + 0.086 \cdot ext{k}_{ ext{s}}^{0.87})$

Open Calculator 🚰

ex $100 \text{mm} = 4 \text{mm} \cdot \left(1 + 0.086 \cdot (647.3872)^{0.87}\right)$

15) Total Metal Deposited in Weld given Total Transverse Shrinkage

 $\mathbf{w} = \mathbf{w}_0 \cdot \left(10^{rac{\mathrm{S_t} - \mathrm{S_0}}{\mathrm{b}}}
ight)$

Open Calculator

 $extbf{ex} \left[5.14064 ext{g} = 4.99 ext{g} \cdot \left(10^{rac{5.30 ext{mm} - 2.20 ext{mm}}{0.24}}
ight)
ight]$

16) Total Transverse Shrinkage during Multi-Pass Welding of Butt Joint

 $\mathbf{x} \left[\mathrm{S_t} = \mathrm{S_0} + \mathrm{b} \cdot \left(\log 10 \! \left(rac{\mathrm{w}}{\mathrm{w_0}}
ight)
ight)
ight]$

Open Calculator 🗗

 $= 2.20 \text{mm} + 0.24 \cdot \left(\log 10 \left(\frac{5.14064 \text{g}}{4.99 \text{g}} \right) \right)$

17) Transverse Shrinkage in Butt Joints 🗗

Open Calculator

$$0.365 \mathrm{mm} = \left(5.08 \cdot \left(\frac{5.5 \mathrm{mm}^2}{802.87 \mathrm{mm}}\right)\right) + (1.27 \cdot 0.26 \mathrm{mm})$$

18) Transverse Shrinkage in First Pass given Total Shrinkage

 $\mathbf{E} \left[\mathbf{S}_0 = \mathbf{S}_{\mathrm{t}} - \mathbf{b} \cdot \left(\log 10 \left(rac{\mathbf{w}}{\mathbf{w}_0}
ight)
ight)
ight]$

Open Calculator 🗗

19) Transverse Shrinkage of Restrained Joint

fx $\mathrm{s} = rac{\mathrm{S}}{1 + 0.086 \cdot \mathrm{k_s^{0.87}}}$

Open Calculator

 $ext{ex} = rac{100 ext{mm}}{1 + 0.086 \cdot (647.3872)^{0.87}}$

Lap Joint with Fillets 🗗

20) Length of Fillet Leg in Lap Joints from Shrinkage

 $ag{h} = rac{ ext{s} \cdot ext{p}_{ ext{tl}}}{1.52}$

Open Calculator 🗗

 $= 2.105711 \text{mm} = \frac{4 \text{mm} \cdot 800.17 \text{mm}}{1.52}$

21) Thickness of Plates in Lap Joints 🔓

Open Calculator 🗗

= $\frac{1.52 \cdot 2.39 \mathrm{mm}}{4 \mathrm{mm}}$

22) Transverse Shrinkage in Lap Joint with Fillets

 $1.52 \cdot 2.39 \text{mm}$

Open Calculator 🖸

 $4.540035 \text{mm} = \frac{1.52 - 2.55 \text{mm}}{800.17 \text{mm}}$

T-Joint with Two Fillets

23) Length of Fillet Leg from Transverse Shrinkage in T-Joints

Open Calculator

1.02

24) Thickness of Bottom Plate in T-Joints

Open Calculator

 $\mathbf{ex} \left[2.55 \mathrm{mm} = rac{1.02 \cdot .01 \mathrm{mm}}{4 \mathrm{mm}}
ight]$

© <u>calculatoratoz.com</u>. A <u>softusvista inc.</u> venture!

25) Transverse Shrinkage in T-Joint with Two Fillets

Open Calculator

$$extbf{x} = rac{1.02 \cdot ext{h}_{ ext{t}}}{ ext{t}_{ ext{b}}}$$

$$\boxed{3.4\text{mm} = \frac{1.02 \cdot .01\text{mm}}{3\text{mm}}}$$

Variables Used

- A_w Cross Sectional Area of Weld (Square Millimeter)
- b Constant For Multi Pass Shrinkage
- **d** Root Opening (Millimeter)
- E Young's Modulus (Newton per Meter)
- **h** Length of Fillet Leg (Millimeter)
- **h**_t Length of Fillet Leg in T Joint (Millimeter)
- k_s Degree of Restraint
- L Length of Span of The Fillet Welds (Millimeter)
- **p**_{th} Plate Thickness in Butt Joint (Millimeter)
- **p**_{tl} Plate Thickness in Lap Joint (Millimeter)
- R Rigidity of Fillet Weld (Newton Meter per Radian)
- **S** Transverse Shrinkage (Millimeter)
- S Transverse Shrinkage of Unrestrained Joint (Millimeter)
- Sn Transverse Shrinkage in First Pass (Millimeter)
- S_h Transverse Shrinkage of Butt Joint (Millimeter)
- S_t Total Transverse Shrinkage (Millimeter)
- t₁ Depth of The First V Groove (Millimeter)
- t₂ Depth of The Last V Groove (Millimeter)
- **t**₃ Depth of Root Face (Millimeter)
- t_h Thickness of Bottom Plate (Millimeter)
- w Total Weight of Weld Metal Deposited (Gram)
- W₀ Weld Metal Deposited in First Pass (Gram)

- **X** Distance from the Center Line of the Frame (Millimeter)
- δ Distortion at Some Distance (Millimeter)
- δ_{max} Maximum Distortion (Millimeter)
- **Φ** Angular Change in Restrained Joints (Radian)
- ν Poisson's Ratio

Constants, Functions, Measurements used

- Function: log10, log10(Number)

 The common logarithm, also known as the base-10 logarithm or the decimal logarithm, is a mathematical function that is the inverse of the exponential function.
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Weight in Gram (g)
 Weight Unit Conversion
- Measurement: Area in Square Millimeter (mm²)
 Area Unit Conversion
- Measurement: Angle in Radian (rad)
 Angle Unit Conversion
- Measurement: Torsion Constant in Newton Meter per Radian (Nm/rad)
 Torsion Constant Unit Conversion
- Measurement: Stiffness Constant in Newton per Meter (N/m)
 Stiffness Constant Unit Conversion

Check other formula lists

- Distortion in Weldments
 Formulas
- Heat Flow in Welded Joints
 Formulas
- Heat Input in Welding Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/19/2024 | 8:43:42 AM UTC

Please leave your feedback here...

