

Transient and Steady State Response Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Transient and Steady State Response Formulas

Transient and Steady State Response 🕑

Second Order System 🕑

fx
$$t_d = \frac{1 + (0.7 \cdot \zeta)}{\omega_n}$$

ex $0.046522s = \frac{1 + (0.7 \cdot 0.1)}{2011}$

23Hz

fx
$$\mathrm{M_o}=e^{-rac{\pi\cdot\zeta}{\sqrt{1-\zeta^2}}}$$

ex
$$0.729248 = e^{-rac{\pi \cdot 0.1}{\sqrt{1-(0.1)^2}}}$$

3) First Peak Undershoot 🕑

Open Calculator

Open Calculator

Open Calculator

12) Time of Peak Overshoot in Second Order System 🕑

fx
$$T_{po} = \frac{(2 \cdot k - 1) \cdot \pi}{\omega_d}$$

ex $1.235766s = \frac{(2 \cdot 5 - 1) \cdot \pi}{22.88Hz}$
13) Time Period of Oscillations

fx
$$T = \frac{2 \cdot \pi}{\omega_d}$$

ex $0.274615s = \frac{2 \cdot \pi}{22.88Hz}$

14) Time Response in Overdamped Case 子

$$\begin{aligned} & \textbf{fx} & \textbf{Open Calculator C} \\ & \textbf{C}_{t} = 1 - \left(\frac{e^{-\left(\zeta_{over} - \left(\sqrt{\left(\zeta_{over}^{2}\right) - 1}\right)\right) \cdot \left(\omega_{n} \cdot T\right)}}{2 \cdot \sqrt{\left(\zeta_{over}^{2}\right) - 1} \cdot \left(\zeta_{over} - \sqrt{\left(\zeta_{over}^{2}\right) - 1}\right)} \right) \end{aligned} \\ & \textbf{ex} \\ & \textbf{0.807466} = 1 - \left(\frac{e^{-\left(1.12 - \left(\sqrt{\left((1.12)^{2}\right) - 1}\right)\right) \cdot \left(23 \text{Hz} \cdot 0.15 \text{s}\right)}}{2 \cdot \sqrt{\left(\left(1.12\right)^{2}\right) - 1} \cdot \left(1.12 - \sqrt{\left(\left(1.12\right)^{2}\right) - 1}\right)} \right) \end{aligned}$$

ex
$$0.060606 = \frac{2}{33}$$

Variables Used

- A Coefficient Value
- Ct Time Response for Second Order System
- e_{ss} Steady State Error
- **k** Kth Value
- Ka Acceleration Error Constant
- Kp Position of Error Constant
- Kv Velocity Error Constant
- Mo Peak Overshoot
- M_u Peak Undershoot
- **n** Number of Oscillations (Hertz)
- T Time Period for Oscillations (Second)
- t_d Delay Time (Second)
- tp Peak Time (Second)
- T_{po} Time of Peak Overshoot (Second)
- t_r Rise Time (Second)
- t_s Setting Time (Second)
- ζ Damping Ratio
- ζ_{over} Overdamping Ratio
- **Φ** Phase Shift (Radian)
- ω_d Damped Natural Frequency (Hertz)
- ω_n Natural Frequency of Oscillation (*Hertz*)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: e, 2.71828182845904523536028747135266249 Napier's constant
- Function: **cos**, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Time in Second (s) Time Unit Conversion
- Measurement: Angle in Radian (rad) Angle Unit Conversion
- Measurement: Frequency in Hertz (Hz) Frequency Unit Conversion

Check other formula lists

- Control System Design
 Formulas
- Electrical Control System
 Modelling Formulas
- Transient and Steady State Response Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/1/2024 | 4:24:23 PM UTC

Please leave your feedback here...

