四
calculatoratoz.com

(1)

unitsconverters.com

Pin Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Pin Formulas

Pin

1) Diameter of Knuckle Pin given Bending Moment in Pin
$f_{\mathrm{x}} \mathrm{d}=\left(\frac{32 \cdot \mathrm{M}_{\mathrm{b}}}{\pi \cdot \sigma_{\mathrm{b}}}\right)^{\frac{1}{3}}$
Open Calculator
ex $37.06722 \mathrm{~mm}=\left(\frac{32 \cdot 450000 \mathrm{~N}^{*} \mathrm{~mm}}{\pi \cdot 90 \mathrm{~N} / \mathrm{mm}^{2}}\right)^{\frac{1}{3}}$
2) Diameter of Knuckle Pin given Bending Stress in Pin
$f \mathrm{fx}=\left(\frac{32 \cdot \frac{L}{2} \cdot\left(\frac{\mathrm{~b}}{4}+\frac{\mathrm{a}}{3}\right)}{\pi \cdot \sigma_{b}}\right)^{\frac{1}{3}}$
Open Calculator
ex $37.03115 \mathrm{~mm}=\left(\frac{32 \cdot \frac{45000 \mathrm{~N}}{2} \cdot\left(\frac{44.3 \mathrm{~mm}}{4}+\frac{26.6 \mathrm{~mm}}{3}\right)}{\pi \cdot 90 \mathrm{~N} / \mathrm{mm}^{2}}\right)^{\frac{1}{3}}$
3) Diameter of Pin of Knuckle Joint given Compressive Stress in Eye End Portion of Pin
$f \mathbf{x} d=\frac{L}{\sigma_{c} \cdot b}$
ex $33.86005 \mathrm{~mm}=\frac{45000 \mathrm{~N}}{30 \mathrm{~N} / \mathrm{mm}^{2} \cdot 44.3 \mathrm{~mm}}$
4) Diameter of Pin of Knuckle Joint given Compressive Stress in Fork End Portion of Pin
$f_{x} d=\frac{L}{2 \cdot \sigma_{c} \cdot a}$
Open Calculator
ex $28.19549 \mathrm{~mm}=\frac{45000 \mathrm{~N}}{2 \cdot 30 \mathrm{~N} / \mathrm{mm}^{2} \cdot 26.6 \mathrm{~mm}}$
5) Diameter of Pin of Knuckle Joint given Diameter of Pinhead
$f \mathrm{fx}=\frac{\mathrm{d}_{1}}{1.5}$
ex $40 \mathrm{~mm}=\frac{60 \mathrm{~mm}}{1.5}$
6) Diameter of Pin of Knuckle Joint given Load and Shear Stress in Pin

$\mathrm{ex} 35.14005 \mathrm{~mm}=\sqrt{\frac{2 \cdot 45000 \mathrm{~N}}{\pi \cdot 23.2 \mathrm{~N} / \mathrm{mm}^{2}}}$
7) Diameter of Pin of Knuckle Joint given Outer Diameter of Eye
$f \mathrm{fx}=\frac{\mathrm{d}_{\mathrm{o}}}{2}$
Open Calculator
ex $40 \mathrm{~mm}=\frac{80 \mathrm{~mm}}{2}$
8) Diameter of Pin of Knuckle Joint given Shear Stress in Eye
$f \mathrm{x} d=\mathrm{d}_{\mathrm{o}}-\frac{\mathrm{L}}{\mathrm{b} \cdot \tau_{\mathrm{e}}}$
ex $37.67494 \mathrm{~mm}=80 \mathrm{~mm}-\frac{45000 \mathrm{~N}}{44.3 \mathrm{~mm} \cdot 24 \mathrm{~N} / \mathrm{mm}^{2}}$
9) Diameter of Pin of Knuckle Joint given Shear Stress in Fork
$f x d=d_{o}-\frac{L}{2 \cdot \tau_{f} \cdot a}$
ex $46.16541 \mathrm{~mm}=80 \mathrm{~mm}-\frac{45000 \mathrm{~N}}{2 \cdot 25 \mathrm{~N} / \mathrm{mm}^{2} \cdot 26.6 \mathrm{~mm}}$
10) Diameter of Pin of Knuckle Joint given Tensile Stress in Eye
$\mathrm{fx} \mathrm{d}=\mathrm{d}_{\mathrm{o}}-\frac{\mathrm{L}}{\mathrm{b} \cdot \sigma_{\mathrm{te}}}$
ex $57.42664 \mathrm{~mm}=80 \mathrm{~mm}-\frac{45000 \mathrm{~N}}{44.3 \mathrm{~mm} \cdot 45 \mathrm{~N} / \mathrm{mm}^{2}}$
Open Calculator
11) Diameter of Pin of Knuckle Joint given Tensile Stress in Fork
$f x d=d_{o}-\frac{L}{2 \cdot \sigma_{t f} \cdot a}$
Open Calculator
ex $48.08058 \mathrm{~mm}=80 \mathrm{~mm}-\frac{45000 \mathrm{~N}}{2 \cdot 26.5 \mathrm{~N} / \mathrm{mm}^{2} \cdot 26.6 \mathrm{~mm}}$
12) Diameter of Pinhead of Knuckle Joint given Diameter of Pin
$\mathrm{fx} \mathrm{d}_{1}=1.5 \cdot \mathrm{~d}$
Open Calculator
ex $55.5 \mathrm{~mm}=1.5 \cdot 37 \mathrm{~mm}$
13) Length of Pin of Knuckle Joint in Contact with Eye End

Variables Used

- a Thickess of Fork Eye of Knuckle Joint (Millimeter)
- b Thickess of Eye of Knuckle Joint (Millimeter)
- d Diameter of Knuckle Pin (Millimeter)
- \mathbf{d}_{1} Diameter of Knuckle Pin Head (Millimeter)
- $\mathbf{d}_{\mathbf{o}}$ Outer Diameter of Eye of Knuckle Joint (Millimeter)
- I Length of Knuckle Pin in Eye End (Millimeter)
- L Load on Knuckle Joint (Newton)
- $\mathbf{M}_{\mathbf{b}}$ Bending Moment in Knuckle Pin (Newton Millimeter)
- $\sigma_{\mathbf{b}}$ Bending Stress in Knuckle Pin (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{c}}$ Compressive Stress in Knuckle Pin (Newton per Square Millimeter)
- $\sigma_{\text {te }}$ Tensile Stress in Eye of Knuckle Joint (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{t f}}$ Tensile Stress in Fork of Knuckle Joint (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{e}}$ Shear Stress in Eye of Knuckle Joint (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{f}}$ Shear Stress in Fork of Knuckle Joint (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{p}}$ Shear Stress in Knuckle Pin (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Torque in Newton Millimeter (N*mm)

Torque Unit Conversion

- Measurement: Stress in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Stress Unit Conversion

Check other formula lists

- Eye Formulas
- Pin Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

