

Design of Knuckle Joint Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 45 Design of Knuckle Joint Formulas

Design of Knuckle Joint &

Eye 🗗

1) Bending Stress in Knuckle Pin given Bending Moment in Pin

$$\sigma_{
m b} = rac{32 \cdot {
m M_b}}{\pi \cdot {
m d}^3}$$

Open Calculator 🗗

$$ext{ex} = rac{32 \cdot 450000 ext{N*mm}}{\pi \cdot (37 ext{mm})^3}$$

2) Bending Stress in Knuckle Pin given Load, Thickness of Eyes and Pin Diameter

$$\sigma_{
m b} = rac{32 \cdot rac{L}{2} \cdot \left(rac{b}{4} + rac{a}{3}
ight)}{\pi \cdot {
m d}^3}$$

$$extbf{ex} egin{aligned} 90.2275 ext{N/mm}^2 &= rac{32 \cdot rac{45000 ext{N}}{2} \cdot \left(rac{44.3 ext{mm}}{4} + rac{26.6 ext{mm}}{3}
ight)}{\pi \cdot (37 ext{mm})^3} \end{aligned}$$

3) Compressive Stress in Pin Inside Eye of Knuckle Joint given Load and Pin Dimensions

Open Calculator 🚰

$$ext{ex} \ 27.45409 ext{N/mm}^2 = rac{45000 ext{N}}{44.3 ext{mm} \cdot 37 ext{mm}}$$

4) Compressive Stress in Pin Inside Fork of Knuckle Joint given Load and Pin Dimensions

fx
$$\sigma_{c} = rac{L}{2 \cdot a \cdot d}$$

Open Calculator

$$=$$
 $22.86121 \mathrm{N/mm^2} = rac{45000 \mathrm{N}}{2 \cdot 26.6 \mathrm{mm} \cdot 37 \mathrm{mm}}$

5) Max Bending Moment in Knuckle Pin given Load, Thickness of Eye and Fork

$$M_{
m b} = rac{
m L}{2} \cdot \left(rac{
m b}{4} + rac{
m a}{3}
ight)$$

$$=$$
 448687.5 N*mm $=$ $\frac{45000$ N $}{2} \cdot \left(\frac{44.3$ mm $}{4} + \frac{26.6$ mm $}{3}\right)$

6) Shear Stress in Eye of Knuckle Joint given Load, Outer Diameter of Eye and its Thickness

 $au_{
m e} = rac{
m L}{
m b\cdot (d_o-d)}$

Open Calculator

- $oxed{ex} 23.62329 ext{N/mm}^2 = rac{45000 ext{N}}{44.3 ext{mm} \cdot (80 ext{mm} 37 ext{mm})}$
- 7) Shear Stress in Fork of Knuckle Joint given Load, Outer Diameter of Eye and Pin Diameter
- $au_{
 m f} = rac{
 m L}{2 \cdot {
 m a} \cdot ({
 m d}_{
 m o} {
 m d})}$

Open Calculator

- $ext{ex} 19.67127 ext{N/mm}^2 = rac{45000 ext{N}}{2 \cdot 26.6 ext{mm} \cdot (80 ext{mm} 37 ext{mm})}$
- 8) Shear Stress in Pin of Knuckle Joint given Load and Pin Diameter

Open Calculator

 $ext{ex} \left[20.92614 ext{N/mm}^2 = rac{2 \cdot 45000 ext{N}}{\pi \cdot (37 ext{mm})^2}
ight]$

9) Tensile Stress in Eye of Knuckle Joint given Load, Outer Diameter of Eye and its Thickness

 $\sigma_{
m te} = rac{
m L}{
m b\cdot (d_o-d)}$

Open Calculator 🗗

 $ext{ex} \ 23.62329 ext{N/mm}^2 = rac{45000 ext{N}}{44.3 ext{mm} \cdot (80 ext{mm} - 37 ext{mm})}$

10) Tensile Stress in Fork of Knuckle Joint given Load, Outer Diameter of Eye and Pin Diameter

 $\sigma_{
m tf} = rac{
m L}{2 \cdot {
m a} \cdot ({
m d_o} - {
m d})}$

Open Calculator

 $ext{ex} 19.67127 ext{N/mm}^2 = rac{45000 ext{N}}{2 \cdot 26.6 ext{mm} \cdot (80 ext{mm} - 37 ext{mm})}$

11) Tensile Stress in Rod of Knuckle Joint

 $\left| \mathbf{\sigma}_{\mathrm{t}}
ight| = rac{4 \cdot \mathrm{L}}{\pi \cdot \mathrm{d}_{\mathrm{r}1}^2}$

Open Calculator

 $ext{ex} 59.621 ext{N/mm}^2 = rac{4 \cdot 45000 ext{N}}{\pi \cdot (31 ext{mm})^2}$

12) Thickness of Eye End of Knuckle Joint given Bending Moment in Pin

$$b = 4 \cdot \left(2 \cdot rac{
m M_b}{
m L} - rac{
m a}{3}
ight)$$

Open Calculator 🚰

13) Thickness of Eye End of Knuckle Joint given Bending Stress in Pin

$$\mathbf{b} = 4 \cdot \left(rac{\pi \cdot \mathrm{d}^3 \cdot \sigma_\mathrm{b}}{16 \cdot \mathrm{L}} - rac{\mathrm{a}}{3}
ight)$$

Open Calculator

14) Thickness of Eye End of Knuckle Joint given Shear Stress in Eye 🛂

$$\mathbf{f}\mathbf{x} b = rac{L}{ au_{
m e} \cdot (d_{
m o} - d)}$$

$$=$$
 $\frac{45000 ext{N}}{24 ext{N/mm}^2 \cdot (80 ext{mm} - 37 ext{mm})}$

15) Thickness of Eye End of Knuckle Joint given Tensile Stress in Eye 🗹

Open Calculator 🗗

 $ext{ex} \ 23.25581 ext{mm} = rac{45000 ext{N}}{45 ext{N}/ ext{mm}^2 \cdot (80 ext{mm} - 37 ext{mm})}$

16) Thickness of Eye of Knuckle Joint given Rod Diameter

fx $b = 1.25 \cdot d_{r1}$

Open Calculator

ex $38.75 \text{mm} = 1.25 \cdot 31 \text{mm}$

Fork 🛂

17) Outer Diameter of Eye of Knuckle Joint given Diameter of Pin

fx $m d_o = 2 \cdot d$

Open Calculator 🗗

18) Outer Diameter of Eye of Knuckle Joint given Shear Stress in Eye

$$ext{ex} 79.32506 ext{mm} = 37 ext{mm} + rac{45000 ext{N}}{44.3 ext{mm} \cdot 24 ext{N}/ ext{mm}^2}$$

19) Outer Diameter of Eye of Knuckle Joint given Shear Stress in Fork

Open Calculator 🗗

$$= \frac{430001}{2 \cdot 25 \text{N/mm}^2 \cdot 26.6 \text{mm}} + 37 \text{mm}$$

20) Outer Diameter of Eye of Knuckle Joint given Tensile Stress in Eye

45000N

Open Calculator

$$ext{ex} \left[59.57336 ext{mm} = 37 ext{mm} + rac{45000 ext{N}}{44.3 ext{mm} \cdot 45 ext{N/mm}^2}
ight]$$

21) Outer Diameter of Eye of Knuckle Joint given Tensile Stress in Fork 🗹

$$\mathbf{ex} \ 68.91942 \mathrm{mm} = rac{45000 \mathrm{N}}{2 \cdot 26.5 \mathrm{N/mm^2 \cdot 26.6 mm}} + 37 \mathrm{mm}$$

22) Thickness of Fork Eye of Knuckle Joint given Bending Moment in Pin

$$a=3\cdot\left(2\cdotrac{ ext{M}_{ ext{b}}}{ ext{L}}-rac{ ext{b}}{4}
ight)$$

Open Calculator 🗗

$$\mathbf{ex} \left[26.775 \mathrm{mm} = 3 \cdot \left(2 \cdot \frac{450000 \mathrm{N*mm}}{45000 \mathrm{N}} - \frac{44.3 \mathrm{mm}}{4} \right) \right]$$

23) Thickness of Fork Eye of Knuckle Joint given Bending Stress in Pin

$$\mathbf{f}$$
 $\mathbf{a} = 3 \cdot \left(rac{\pi \cdot \mathbf{d}^3 \cdot \sigma_{\mathrm{b}}}{16 \cdot \mathbf{L}} - rac{\mathrm{b}}{4}
ight)$

Open Calculator

$$extbf{ex} \ 26.44916 ext{mm} = 3 \cdot \left(rac{\pi \cdot \left(37 ext{mm}
ight)^3 \cdot 90 ext{N/mm}^2}{16 \cdot 45000 ext{N}} - rac{44.3 ext{mm}}{4}
ight)$$

24) Thickness of Fork Eye of Knuckle Joint given Compressive Stress in Pin Inside Fork End

$$\mathbf{f}\mathbf{x} egin{bmatrix} \mathbf{a} = rac{L}{2 \cdot \sigma_{c} \cdot \mathbf{d}} \end{bmatrix}$$

$$=$$
 $20.27027 ext{mm} = rac{45000 ext{N}}{2 \cdot 30 ext{N/mm}^2 \cdot 37 ext{mm}}$

25) Thickness of Fork Eye of Knuckle Joint given Rod Diameter

fx $m a = 0.75 \cdot d_{r1}$

Open Calculator 🗗

 $\texttt{ex} \ 23.25 \text{mm} = 0.75 \cdot 31 \text{mm}$

26) Thickness of Fork Eye of Knuckle Joint given Shear Stress in Fork

 $\left| \mathbf{a}
ight| \mathbf{a} = rac{\mathrm{L}}{2 \cdot \mathrm{ au_f} \cdot (\mathrm{d_o} - \mathrm{d})} \, .$

Open Calculator

 $\mathbf{ex} = 20.93023 \mathrm{mm} = rac{45000 \mathrm{N}}{2 \cdot 25 \mathrm{N/mm^2} \cdot (80 \mathrm{mm} - 37 \mathrm{mm})}$

27) Thickness of Fork Eye of Knuckle Joint given Tensile Stress in Fork

Open Calculator 🚰

 $= \frac{45000 \mathrm{N}}{2 \cdot 26.5 \mathrm{N/mm^2} \cdot (80 \mathrm{mm} - 37 \mathrm{mm})}$

Pin 🗗

28) Diameter of Knuckle Pin given Bending Moment in Pin

$$\mathrm{d} = \left(rac{32\cdot\mathrm{M_b}}{\pi\cdot\sigma_\mathrm{b}}
ight)^{rac{1}{3}}$$

Open Calculator

ex
$$37.06722 \mathrm{mm} = \left(\frac{32 \cdot 450000 \mathrm{N^*mm}}{\pi \cdot 90 \mathrm{N/mm^2}}\right)^{\frac{1}{3}}$$

29) Diameter of Knuckle Pin given Bending Stress in Pin

$$\mathrm{d} = \left(rac{32 \cdot rac{L}{2} \cdot \left(rac{b}{4} + rac{a}{3}
ight)}{\pi \cdot \sigma_{b}}
ight)^{rac{1}{3}}$$

Open Calculator

30) Diameter of Pin of Knuckle Joint given Compressive Stress in Eye End Portion of Pin

$$\mathbf{f}\mathbf{x} \, \mathrm{d} = rac{\mathrm{L}}{\sigma_\mathrm{c} \cdot \mathrm{b}}$$

$$=$$
 $33.86005 ext{mm} = rac{45000 ext{N}}{30 ext{N/mm}^2 \cdot 44.3 ext{mm}}$

31) Diameter of Pin of Knuckle Joint given Compressive Stress in Fork End Portion of Pin

 $\mathbf{f} \mathbf{k} = rac{\mathrm{L}}{2 \cdot \mathbf{\sigma_c} \cdot \mathbf{a}}$

Open Calculator

 $\mathbf{ex} = \frac{45000 \mathrm{N}}{2 \cdot 30 \mathrm{N/mm^2 \cdot 26.6mm}}$

32) Diameter of Pin of Knuckle Joint given Diameter of Pinhead

 $\mathbf{fx} d = \frac{d_1}{1.5}$

Open Calculator

 $40 \text{mm} = \frac{60 \text{mm}}{1.5}$

33) Diameter of Pin of Knuckle Joint given Load and Shear Stress in Pin

fx $d = \sqrt{rac{2 \cdot L}{\pi \cdot au_p}}$

Open Calculator 🗗

 $oxed{ex} 35.14005 \mathrm{mm} = \sqrt{rac{2 \cdot 45000 \mathrm{N}}{\pi \cdot 23.2 \mathrm{N/mm^2}}}$

34) Diameter of Pin of Knuckle Joint given Outer Diameter of Eve

Open Calculator

 $40\text{mm} = \frac{80\text{mm}}{2}$

35) Diameter of Pin of Knuckle Joint given Shear Stress in Eye

Open Calculator

36) Diameter of Pin of Knuckle Joint given Shear Stress in Fork

Open Calculator

37) Diameter of Pin of Knuckle Joint given Tensile Stress in Eye

Open Calculator

 $ext{ex} \left[57.42664 ext{mm} = 80 ext{mm} - rac{45000 ext{N}}{44.3 ext{mm} \cdot 45 ext{N/mm}^2}
ight]$

38) Diameter of Pin of Knuckle Joint given Tensile Stress in Fork 🗹

 $\mathbf{K} \, \mathrm{d} = \mathrm{d_o} - rac{\mathrm{L}}{2 \cdot \mathrm{\sigma_{tf}} \cdot \mathrm{a}}$

Open Calculator

39) Diameter of Pinhead of Knuckle Joint given Diameter of Pin

fx $d_1 = 1.5 \cdot d$

 $55.5 \text{mm} = 1.5 \cdot 37 \text{mm}$

40) Length of Pin of Knuckle Joint in Contact with Eye End

Open Calculator 🗗

Open Calculator

 $ext{ex} \ 40.54054 ext{mm} = rac{45000 ext{N}}{30 ext{N}/ ext{mm}^2 \cdot 37 ext{mm}}$

Rod 🛂

41) Diameter of Rod of Knuckle Joint given its Enlarged Diameter near Joint

Open Calculator

= 35.45455mm = $\frac{39$ mm}{1.1}

42) Diameter of Rod of Knuckle Joint given Tensile Stress in Rod

Open Calculator 🗗

ex $33.85138 \mathrm{mm} = \sqrt{rac{4 \cdot 45000 \mathrm{N}}{\pi \cdot 50 \mathrm{N/mm^2}}}$

43) Enlarged Diameter of Rod of Knuckle Joint near Joint

fx $D_1 = 1.1 \cdot d_r$

Open Calculator

 $= 39 \mathrm{mm} = 1.1 \cdot 35.45455 \mathrm{mm}$

44) Rod Diameter of Knuckle Joint given Thickness of Eye

Open Calculator 🗗

= $35.44 \mathrm{mm} = rac{44.3 \mathrm{mm}}{1.25}$

45) Rod Diameter of Knuckle Joint given Thickness of Fork Eye

Open Calculator

 $= 26.6 \text{mm} = \frac{26.6 \text{mm}}{0.75}$

Variables Used

- a Thickess of Fork Eye of Knuckle Joint (Millimeter)
- **b** Thickess of Eye of Knuckle Joint (Millimeter)
- **d** Diameter of Knuckle Pin (Millimeter)
- d₁ Diameter of Knuckle Pin Head (Millimeter)
- **D**₁ Enlarged Diameter of Knuckle Joint Rod (Millimeter)
- **d**_o Outer Diameter of Eye of Knuckle Joint (*Millimeter*)
- **d**_r Diameter of Knuckle Joint (Millimeter)
- d_{r1} Diameter of Rod of Knuckle Joint (Millimeter)
- Length of Knuckle Pin in Eye End (Millimeter)
- L Load on Knuckle Joint (Newton)
- M_b Bending Moment in Knuckle Pin (Newton Millimeter)
- σ_b Bending Stress in Knuckle Pin (Newton per Square Millimeter)
- σ_c Compressive Stress in Knuckle Pin (Newton per Square Millimeter)
- σ_t Tensile Stress in Knuckle Joint Rod (Newton per Square Millimeter)
- σ_{te} Tensile Stress in Eye of Knuckle Joint (Newton per Square Millimeter)
- σ_{tf} Tensile Stress in Fork of Knuckle Joint (Newton per Square Millimeter)
- Te Shear Stress in Eye of Knuckle Joint (Newton per Square Millimeter)
- Tf Shear Stress in Fork of Knuckle Joint (Newton per Square Millimeter)
- Tp Shear Stress in Knuckle Pin (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Torque in Newton Millimeter (N*mm)
 Torque Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²)
 Stress Unit Conversion

Check other formula lists

- Design of Cotter Joint Formulas
- Design of Knuckle Joint Formulas
- Packing Formulas
- Retaining Rings and Circlips
 Formulas

- Riveted Joints Formulas
- Seals Formulas
- Threaded Bolted Joints Formulas
- Welded Joints Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/18/2024 | 5:12:29 AM UTC

Please leave your feedback here...

