

All Wheel Braking for Racing Car Formulas

Calculators!

Examples!

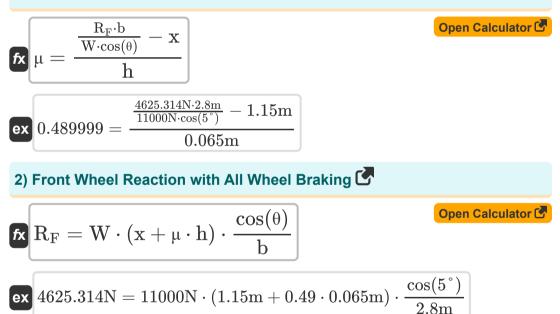
Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

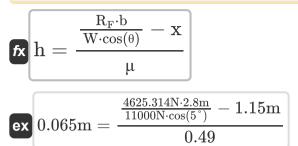
Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...



List of 25 All Wheel Braking for Racing Car Formulas


All Wheel Braking for Racing Car 🕑

Effects on Front Wheel 🕑

1) Friction Coefficient between Wheel and Road Surface with Front Wheel Brake

3) Height of C.G. from Road Surface with Front Wheel Brake

4) Horizontal Distance of C.G from Rear Axle with Front Wheel Brake

fx
$$\mathbf{x} = rac{\mathbf{R}_{\mathrm{F}} \cdot \mathbf{b}}{\mathbf{W} \cdot \cos(\theta)} - \mu \cdot \mathbf{h}$$

$$\overbrace{1.15m}{} = \frac{4625.314N \cdot 2.8m}{11000N \cdot \cos(5°)} - 0.49 \cdot 0.065m$$

5) Slope of Road from Braking with Front Wheel Reaction 🕑

$$\begin{aligned} & \mathbf{fx} \ \theta = a \cos\left(\frac{\mathbf{R}_{\mathrm{F}}}{\mathbf{W} \cdot \frac{\mathbf{x} + \mu \cdot \mathbf{h}}{\mathbf{b}}}\right) \end{aligned}$$

$$\mathbf{ex} \ 5.000027^{\circ} = a \cos\left(\frac{4625.314\mathrm{N}}{11000\mathrm{N} \cdot \frac{1.15\mathrm{m} + 0.49 \cdot 0.065\mathrm{m}}{2.8\mathrm{m}}}\right) \end{aligned}$$

Open Calculator

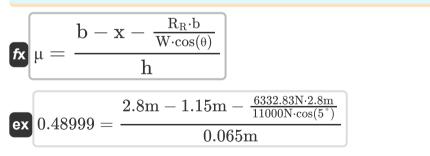
Open Calculator

Open Calculator

6) Vehicle Weight with All Wheel Brake on Front Wheel 🕑

$$f_{\mathbf{X}} W = \frac{R_{F}}{(\mathbf{x} + \mathbf{\mu} \cdot \mathbf{h}) \cdot \frac{\cos(\theta)}{\mathbf{b}}}$$

$$e_{\mathbf{X}} 11000N = \frac{4625.314N}{(1.15m + 0.49 \cdot 0.065m) \cdot \frac{\cos(5^{\circ})}{2.8m}}$$

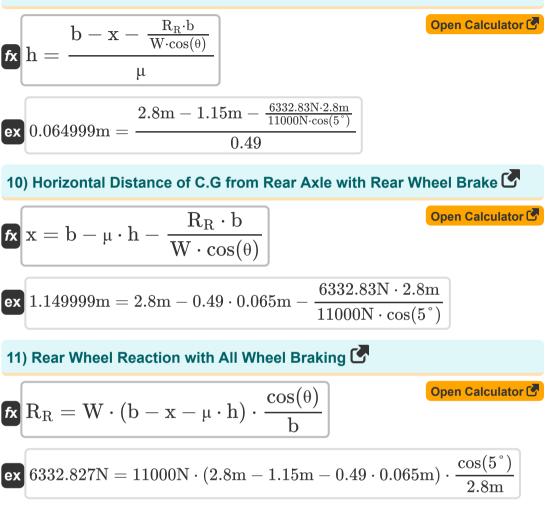

7) Wheel Base with All Wheel Braking on Front Wheel

fx
$$\mathbf{b} = \mathbf{W} \cdot (\mathbf{x} + \mathbf{\mu} \cdot \mathbf{h}) \cdot rac{\cos(\theta)}{\mathbf{R}_{\mathrm{F}}}$$

$$ext{ex} 2.8 ext{m} = 11000 ext{N} \cdot (1.15 ext{m} + 0.49 \cdot 0.065 ext{m}) \cdot rac{ ext{cos}(5\degree)}{4625.314 ext{N}}$$

Effects on Rear Wheel 🕑

8) Friction Coefficient between Wheel and Road Surface with Rear Wheel Brake


Open Calculator 🗗

Open Calculator

9) Height of C.G. from Road Surface with Rear Wheel Brake 🗹

5/14

12) Slope of Road from Braking with Rear Wheel Reaction 🕑

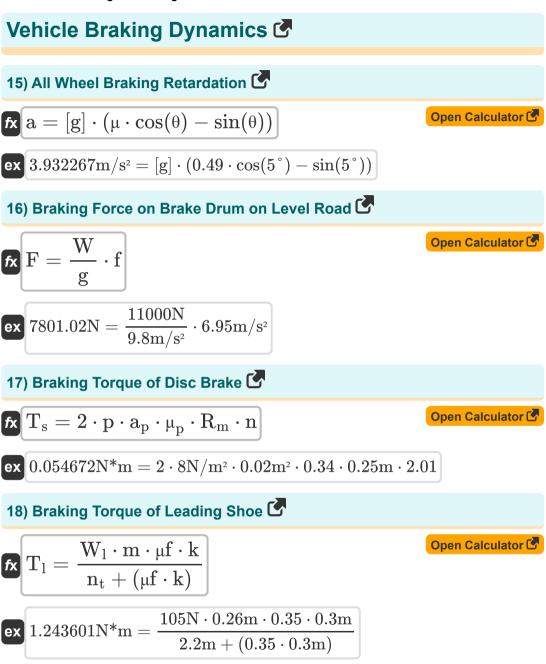
$$f_{\mathbf{X}} = a \cos\left(\frac{R_{R}}{W \cdot \frac{b-x-\mu \cdot h}{b}}\right)$$

$$e_{\mathbf{X}} 4.99974^{\circ} = a \cos\left(\frac{6332.83N}{11000N \cdot \frac{2.8m-1.15m-0.49\cdot0.065m}{2.8m}}\right)$$

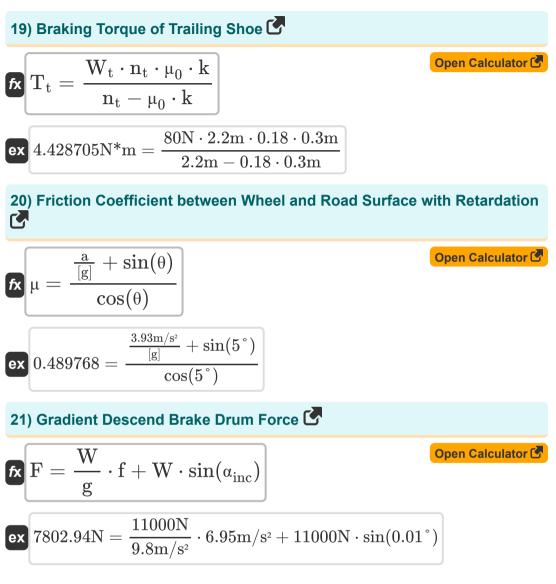
$$f_{\mathbf{X}} 4.99974^{\circ} = a \cos\left(\frac{6332.83N}{11000N \cdot \frac{2.8m-1.15m-0.49\cdot0.065m}{2.8m}}\right)$$

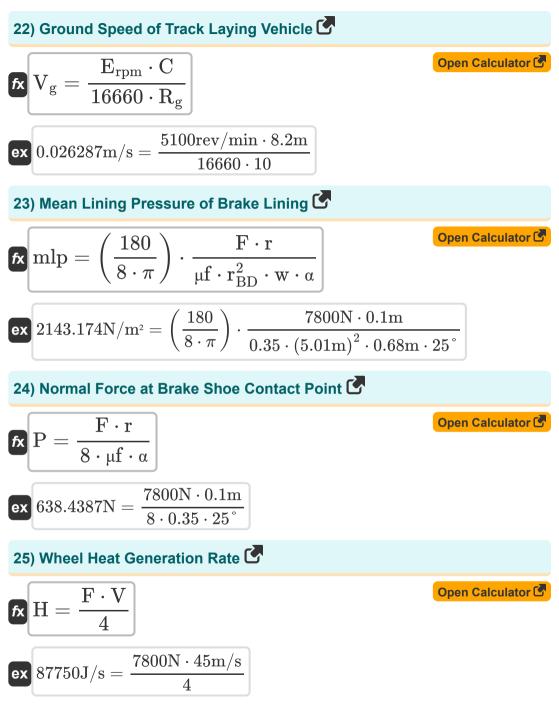
$$f_{\mathbf{X}} W = \frac{R_{R}}{(b-x-\mu \cdot h) \cdot \frac{\cos(\theta)}{b}}$$

$$e_{\mathbf{X}} 11000N = \frac{6332.83N}{(2.8m-1.15m-0.49\cdot0.065m) \cdot \frac{\cos(5^{\circ})}{2.8m}}$$


$$f_{\mathbf{X}} W = \frac{W \cdot \cos(\theta) \cdot (x + \mu \cdot h)}{W \cdot \cos(\theta) - R_{R}}$$

$$f_{\mathbf{X}} b = \frac{W \cdot \cos(\theta) \cdot (x + \mu \cdot h)}{W \cdot \cos(\theta) - R_{R}}$$


$$e_{\mathbf{X}} 2.80002m = \frac{11000N \cdot \cos(5^{\circ}) \cdot (1.15m + 0.49 \cdot 0.065m)}{11000N \cdot \cos(5^{\circ}) - 6332.83N}$$



Variables Used

- **a** Retardation Produced by Braking (Meter per Square Second)
- **a**p Area of One Piston per Caliper (Square Meter)
- **b** Vehicle Wheelbase (Meter)
- C Driving Sprocket Circumference (Meter)
- Erpm Engine RPM (Revolution per Minute)
- **f** Vehicle Deceleration (Meter per Square Second)
- **F** Brake Drum Braking Force (Newton)
- g Acceleration due to Gravity (Meter per Square Second)
- h Height of Center of Gravity (C.G.) of Vehicle (Meter)
- H Heat Generated per Second at Each Wheel (Joule per Second)
- **k** Effective Radius of Normal Force (Meter)
- **m** Distance of Actuating Force from Horizontal (Meter)
- mlp Mean Lining Pressure (Newton per Square Meter)
- **n** Number of Caliper Units
- **n**_t Force of Trailing Shoe Distance from Horizontal (Meter)
- **p** Line Pressure (Newton per Square Meter)
- P Normal Force between Shoe and Drum (Newton)
- r Effective Wheel Radius (Meter)
- **r**_{BD} Brake Drum Radius (Meter)
- **R**_F Normal Reaction at the Front Wheel (Newton)
- R_g Overall Gear Reduction
- R_m Mean Radius of Caliper Unit to Disc Axis (Meter)
- **R**_R Normal Reaction at Rear Wheel (*Newton*)

- T_I Leading Shoe Braking Torque (Newton Meter)
- **T**_s Disc Brake Braking Torque (Newton Meter)
- T_t Trailing Shoe Braking Torque (Newton Meter)
- V Vehicle Speed (Meter per Second)
- V_q Ground Speed of Track Laying Vehicle (Meter per Second)
- W Brake Lining Width (Meter)
- W Vehicle Weight (Newton)
- WI Leading Shoe Actuating Force (Newton)
- Wt Trailing Shoe Actuating Force (Newton)
- X Horizontal Distance of C.G. from Rear Axle (Meter)
- α Angle between Linings of Brake Shoes (Degree)
- α_{inc} Angle of Inclination of Plane to Horizontal (Degree)
- **θ** Inclination Angle of Road (*Degree*)
- µ Friction Coefficient Between Wheels and Ground
- μ_0 Friction Coefficient for Smooth Road
- µ_p Friction Coefficient of Pad Material
- µf Friction Coefficient between Drum and Shoe

Constants, Functions, Measurements used

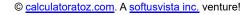
- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: [g], 9.80665 Gravitational acceleration on Earth
- Function: acos, acos(Number) The inverse cosine function, is the inverse function of the cosine function. It is the function that takes a ratio as an input and returns the angle whose cosine is equal to that ratio.
- Function: **cos**, cos(Angle) Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sin, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Pressure in Newton per Square Meter (N/m²) Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²) Acceleration Unit Conversion
- Measurement: Power in Joule per Second (J/s) Power Unit Conversion

- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Angular Velocity in Revolution per Minute (rev/min) Angular Velocity Unit Conversion
- Measurement: Torque in Newton Meter (N*m) Torque Unit Conversion

Check other formula lists

- All Wheel Braking for Racing Car
 Rear Wheel Braking for Racing Formulas
 Car Formulas
- Front Wheel Braking for Racing Cars Formulas

Feel free to SHARE this document with your friends!


PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

8/23/2024 | 6:48:13 AM UTC

Please leave your feedback here...

