

Transient Heat Conduction Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Transient Heat Conduction Formulas

Transient Heat Conduction

1) Change in Internal energy of Lumped body

$$\Delta U = \rho \cdot c \cdot V_T \cdot (T_o - t_f) \cdot (1 - (\exp(-(Bi \cdot Fo))))$$

Open Calculator 🗗

ex

$$\boxed{2583.765 J = 5.51 kg/m^3 \cdot 120 J/(kg^*K) \cdot 63 m^3 \cdot (20K - 10K) \cdot (1 - (exp(-(0.012444 \cdot 0.5))))}$$

2) Instantaneous heat transfer rate

$$\boxed{\mathbf{Q}_{rate} = h \cdot A \cdot (T_o - t_f) \cdot \left(exp\left(-\frac{h \cdot A \cdot t}{\rho \cdot V_T \cdot C_o}\right)\right)}$$

Open Calculator

ex

$$\boxed{7.155337W = 0.04W/m^{2} * K \cdot 18m^{2} \cdot (20K - 10K) \cdot \left(\exp\left(-\frac{0.04W/m^{2} * K \cdot 18m^{2} \cdot 12s}{5.51kg/m^{3} \cdot 63m^{3} \cdot 4J/(kg * K)}\right)\right)}$$

3) Power on exponential of temperature-time relation

$$\mathbf{fx} egin{bmatrix} \mathbf{b} = -rac{\mathbf{h} \cdot \mathbf{A} \cdot \mathbf{t}}{
ho \cdot V_{\mathrm{T}} \cdot C_{\mathrm{o}}} \end{bmatrix}$$

Open Calculator

- $\boxed{ \text{ex} } \text{-}0.006222 = -\frac{0.04 W/m^{2} \text{*} \text{K} \cdot 18 m^{2} \cdot 12 \text{s}}{5.51 kg/m^{3} \cdot 63 m^{3} \cdot 4J/(kg^{*}K)}$
- 4) Power on Exponential of Temperature-time Relation given Biot and Fourier Number

$$\mathbf{f} \mathbf{x} \mathbf{b} = -(\mathrm{Bi} \cdot \mathrm{Fo})$$

Open Calculator 🗗

$$\texttt{ex} \ \texttt{-}0.006222 = -(0.012444 \cdot 0.5)$$

5) Product of Biot and Fourier Number given System Properties

 $ext{BiFo} = rac{ ext{h} \cdot ext{A} \cdot ext{t}}{
ho \cdot ext{V}_{ ext{T}} \cdot ext{C}_{ ext{o}}}$

Open Calculator

- $\boxed{ \text{ex} \ 0.006222 = \frac{0.04 W/m^2 * K \cdot 18m^2 \cdot 12s}{5.51 kg/m^3 \cdot 63m^3 \cdot 4J/(kg * K)} }$
- 6) Ratio of temperature difference for given time elapsed

 $T_{ratio} = expigg(-rac{h\cdot A\cdot t}{
ho\cdot V_T\cdot C_o}igg)$

Open Calculator

- $= \exp \left(-\frac{0.04 \mathrm{W/m^2*K \cdot 18m^2 \cdot 12s}}{5.51 \mathrm{kg/m^3 \cdot 63m^3 \cdot 4J/(kg*K)}} \right)$
- 7) Ratio of Temperature difference for Time Elapsed given Biot and Fourier Number
- $ag{T_{
 m ratio} = \exp(-({
 m Bi}\cdot{
 m Fo}))}$

Open Calculator

- 8) Temperature after given time elapsed

 $\mathbf{E} = \left((T_o - t_f) \cdot \left(\exp \left(- rac{\mathbf{h} \cdot \mathbf{A} \cdot \mathbf{t}}{\mathbf{\rho} \cdot \mathbf{V}_T \cdot \mathbf{C}_o}
ight)
ight) + \mathbf{t}_f$

Open Calculator 🗗

- $\boxed{ 19.93797 K = \left((20 K 10 K) \cdot \left(exp \left(-\frac{0.04 W/m^2 * K \cdot 18 m^2 \cdot 12 s}{5.51 kg/m^3 \cdot 63 m^3 \cdot 4J/(kg^* K)} \right) \right) \right) + 10 K }$
- 9) Thermal Capacitance
- $\mathbf{fx} \mathbf{C} = \rho \cdot \mathbf{C_o} \cdot \mathbf{V}$

Open Calculator 🗗

 $m ex \ 26.448J/K = 5.51kg/m^3 \cdot 4J/(kg^*K) \cdot 1.2m^3$

10) Thermal Diffusivity

fx
$$\alpha = \frac{k}{\rho \cdot C_o}$$

$$\boxed{\text{ex}} \ 0.461887 \text{m}^2/\text{s} = \frac{10.18 \text{W}/(\text{m}^*\text{K})}{5.51 \text{kg/m}^3 \cdot 4\text{J}/(\text{kg}^*\text{K})}$$

11) Time Constant in unsteady state heat transfer

$$\mathbf{T}_{c} = rac{
ho \cdot C_{o} \cdot V_{T}}{h \cdot A}$$

$$= 1928.5 = \frac{5.51 \text{kg/m}^3 \cdot 4 \text{J/(kg*K)} \cdot 63 \text{m}^3}{0.04 \text{W/m}^2 \text{K} \cdot 18 \text{m}^2}$$

12) Time taken to reach given temperature

$$t = \ln\!\left(rac{T_f - t_f}{T_o - t_f}
ight) \cdot \left(rac{
ho \cdot V_T \cdot c}{h \cdot A}
ight)$$

$$\boxed{ 12s = \ln \bigg(\frac{20.002074366K - 10K}{20K - 10K} \bigg) \cdot \bigg(\frac{5.51 kg/m^3 \cdot 63m^3 \cdot 120J/(kg^*K)}{0.04W/m^2 * K \cdot 18m^2} \bigg) }$$

13) Total Heat Transfer during Time Interval

fx
$$Q =
ho \cdot c \cdot V_T \cdot (T_o - t_f) \cdot (1 - (\exp(-(Bi \cdot Fo))))$$

ex

$$2583.765 \text{J} = 5.51 \text{kg/m}^3 \cdot 120 \text{J/(kg*K)} \cdot 63 \text{m}^3 \cdot (20 \text{K} - 10 \text{K}) \cdot (1 - (\exp(-(0.012444 \cdot 0.5))))$$

Variables Used

- A Surface Area (Square Meter)
- b Constant B
- Bi Biot Number
- BiFo Product of Biot And Fourier Numbers
- C Specific Heat (Joule per Kilogram per K)
- C Thermal Capacitance (Joule per Kelvin)
- Co Specific Heat Capacity (Joule per Kilogram per K)
- Fo Fourier Number
- h Convection Heat Transfer Coefficient (Watt per Square Meter per Kelvin)
- **k** Thermal Conductivity (Watt per Meter per K)
- Q Heat Transfer (Joule)
- Qrate Heat Rate (Watt)
- t Time Elapsed (Second)
- **T** Temperature (Kelvin)
- T_c Time Constant
- t_f Fluid Temperature (Kelvin)
- T_f Final Temperature (Kelvin)
- To Initial Temperature (Kelvin)
- T_{ratio} Temperature Ratio
- V Volume (Cubic Meter)
- V_T Total Volume (Cubic Meter)
- α Thermal Diffusivity (Square Meter Per Second)
- **ΔU** Change in Internal Energy (*Joule*)
- p Density (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Function: exp, exp(Number)
 n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: In, In(Number)
 The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Temperature in Kelvin (K)
 Temperature Unit Conversion
- Measurement: Volume in Cubic Meter (m³)
 Volume Unit Conversion
- Measurement: Area in Square Meter (m²)
 Area Unit Conversion
- Measurement: Energy in Joule (J)

 Energy Unit Conversion
- Measurement: Power in Watt (W)

 Power Unit Conversion
- Measurement: Thermal Conductivity in Watt per Meter per K (W/(m*K))

 Thermal Conductivity Unit Conversion
- Measurement: Specific Heat Capacity in Joule per Kilogram per K (J/(kg*K))

 Specific Heat Capacity Unit Conversion
- Measurement: Heat Transfer Coefficient in Watt per Square Meter per Kelvin (W/m²*K)

 Heat Transfer Coefficient Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion
- Measurement: Diffusivity in Square Meter Per Second (m²/s)
 Diffusivity Unit Conversion
- Measurement: Heat Capacity in Joule per Kelvin (J/K)

 Heat Capacity Unit Conversion

Check other formula lists

- Conduction in Cylinder Formulas
- Conduction in Plane Wall Formulas
- Conduction in Sphere Formulas
- Conduction Shape Factors for Different Configurations Formulas
- Other shapes Formulas
- Steady State Heat Conduction with Heat Generation Formulas
- Transient Heat Conduction Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

8/9/2024 | 8:21:25 AM UTC

Please leave your feedback here...

