
calculatoratoz.com

unitsconverters.com

Beams, Columns and Other Members Design Methods Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Beams, Columns and Other Members Design Methods Formulas

Beams, Columns and Other Members Design Methods

Beams \mathbb{C}

1) Straight Beam Deflection
$\mathrm{fx} \delta\left(\frac{\mathrm{k}_{\mathrm{b}} \cdot \mathrm{T}_{\mathrm{l}} \cdot(\mathrm{l})^{3}}{\mathrm{E}_{\mathrm{c}} \cdot \mathrm{I}}\right)+\left(\frac{\mathrm{k}_{\mathrm{s}} \cdot \mathrm{T}_{\mathrm{l}} \cdot \mathrm{l}}{\mathrm{G} \cdot \mathrm{A}}\right)$
Open Calculator 〔
ex
$19.92665 \mathrm{~mm}=\left(\frac{0.85 \cdot 10 \mathrm{kN} \cdot(3000 \mathrm{~mm})^{3}}{30000 \mathrm{MPa} \cdot 3.56 \mathrm{~kg} \cdot \mathrm{~m}^{2}}\right)+\left(\frac{0.75 \cdot 10 \mathrm{kN} \cdot 3000 \mathrm{~mm}}{25000 \mathrm{MPa} \cdot 50625 \mathrm{~mm}^{2}}\right)$
2) Tapered Beam Deflection for Mid-Span Concentrated Load
$\mathrm{fx} \delta=\frac{3 \cdot \mathrm{~T}_{\mathrm{l}} \cdot \mathrm{l}}{10 \cdot \mathrm{G} \cdot \mathrm{b} \cdot \mathrm{d}}$
ex $4.141501 \mathrm{~mm}=\frac{3 \cdot 10 \mathrm{kN} \cdot 3000 \mathrm{~mm}}{10 \cdot 25000 \mathrm{MPa} \cdot 305 \mathrm{~mm} \cdot 285 \mathrm{~mm}}$
3) Tapered beam Deflection for Uniformly Distributed Load
$f \mathbf{x} \delta=\frac{3 \cdot \mathrm{~T}_{\mathrm{l}} \cdot \mathrm{l}}{20 \cdot \mathrm{G} \cdot \mathrm{b} \cdot \mathrm{d}}$
Open Calculator
ex $2.070751 \mathrm{~mm}=\frac{3 \cdot 10 \mathrm{kN} \cdot 3000 \mathrm{~mm}}{20 \cdot 25000 \mathrm{MPa} \cdot 305 \mathrm{~mm} \cdot 285 \mathrm{~mm}}$
Rectangular Beams with Tensile Reinforcing Only
4) Bending Moment of Beam due to Stress in Concrete
$\mathrm{fx}_{\mathrm{x}} \mathrm{M}=\left(\frac{1}{2}\right) \cdot \mathrm{f}_{\mathrm{c}} \cdot \mathrm{k} \cdot \mathrm{j} \cdot \mathrm{b} \cdot \mathrm{d}^{2}$
Open Calculator
ex $35.07772 \mathrm{kN}^{*} \mathrm{~m}=\left(\frac{1}{2}\right) \cdot 7.3 \mathrm{MPa} \cdot 0.458 \cdot 0.847 \cdot 305 \mathrm{~mm} \cdot(285 \mathrm{~mm})^{2}$
5) Bending Moment of Beam due to Stress in Steel
$f \times M=f_{s} \cdot p \cdot j \cdot b \cdot d^{2}$
Open Calculator
ex $35.18893 \mathrm{kN}^{*} \mathrm{~m}=130 \mathrm{MPa} \cdot 0.0129 \cdot 0.847 \cdot 305 \mathrm{~mm} \cdot(285 \mathrm{~mm})^{2}$
6) Stress in Concrete using Working-Stress Design
$f \mathrm{f}_{\mathrm{c}}=\frac{2 \cdot \mathrm{M}}{\mathrm{k} \cdot \mathrm{j} \cdot \mathrm{b} \cdot \mathrm{d}^{2}}$
ex $7.283826 \mathrm{MPa}=\frac{2 \cdot 35 \mathrm{kN}^{*} \mathrm{~m}}{0.458 \cdot 0.847 \cdot 305 \mathrm{~mm} \cdot(285 \mathrm{~mm})^{2}}$
7) Stress in Steel by Working-Stress Design \subseteq

ex $129.3404 \mathrm{MPa}=\frac{35 \mathrm{kN}^{*} \mathrm{~m}}{1121 \mathrm{~mm}^{2} \cdot 0.847 \cdot 285 \mathrm{~mm}}$
8) Stress in Steel using Working-Stress Design
$f \times f_{s}=\frac{M}{p \cdot j \cdot b \cdot d^{2}}$
Open Calculator
$\mathrm{ex} 129.302 \mathrm{MPa}=\frac{35 \mathrm{kN}^{*} \mathrm{~m}}{0.0129 \cdot 0.847 \cdot 305 \mathrm{~mm} \cdot(285 \mathrm{~mm})^{2}}$

Shear and Diagonal Tension in Beams

9) Cross-Sectional Area of Web Reinforcement
$f x A_{v}=\left(V-V^{\prime}\right) \cdot \frac{s}{f_{v} \cdot d}$
Open Calculator
ex $8789.474 \mathrm{~mm}^{2}=(500.00 \mathrm{~N}-495 \mathrm{~N}) \cdot \frac{50.1 \mathrm{~mm}}{100 \mathrm{MPa} \cdot 285 \mathrm{~mm}}$
10) Effective Depth given Cross-Sectional Area of Web Reinforcement
$f x d=\frac{\left(V-V^{\prime}\right) \cdot s}{f_{v} \cdot A_{v}}$

[^0]11) Effective Depth of Beam given Shearing Unit Stress in Reinforced Concrete Beam

Open Calculator
ex $285.0042 \mathrm{~mm}=\frac{500.00 \mathrm{~N}}{305 \mathrm{~mm} \cdot 0.005752 \mathrm{MPa}}$
12) Shear Carried by Concrete given Cross-Sectional Area of Web Reinforcement
$f x V^{\prime}=V-\left(\frac{\mathrm{A}_{\mathrm{v}} \cdot \mathrm{f}_{\mathrm{v}} \cdot \mathrm{d}}{\mathrm{s}}\right)$
Open Calculator 〔
ex $495.0099 \mathrm{~N}=500.00 \mathrm{~N}-\left(\frac{8772 \mathrm{~mm}^{2} \cdot 100 \mathrm{MPa} \cdot 285 \mathrm{~mm}}{50.1 \mathrm{~mm}}\right)$
13) Shearing Unit Stress in Reinforced Concrete Beam
$\mathrm{fx} \mathrm{v}=\frac{\mathrm{V}}{\mathrm{b} \cdot \mathrm{d}}$
ex $0.005752 \mathrm{MPa}=\frac{500.00 \mathrm{~N}}{305 \mathrm{~mm} \cdot 285 \mathrm{~mm}}$
14) Stirrups Spacing given Cross-Sectional Area of Web Reinforcement $\boxed{\boxed{y}}$
$f_{x} s=\frac{A_{v} \cdot f_{v} \cdot d}{V-V^{\prime}}$
ex $50.0004 \mathrm{~mm}=\frac{8772 \mathrm{~mm}^{2} \cdot 100 \mathrm{MPa} \cdot 285 \mathrm{~mm}}{500.00 \mathrm{~N}-495 \mathrm{~N}}$
15) Total Shear given Cross-Sectional Area of Web Reinforcement $工$
$f \times V=\left(\frac{A_{v} \cdot f_{v} \cdot d}{s}\right)+V^{\prime}$

ex $499.9901 \mathrm{~N}=\left(\frac{8772 \mathrm{~mm}^{2} \cdot 100 \mathrm{MPa} \cdot 285 \mathrm{~mm}}{50.1 \mathrm{~mm}}\right)+495 \mathrm{~N}$

16) Width of Beam given Shearing Unit Stress in Reinforced Concrete Beam
$\mathrm{fx} \mathrm{b}=\frac{\mathrm{V}}{\mathrm{d} \cdot \mathrm{v}}$
ex $305.0045 \mathrm{~mm}=\frac{500.00 \mathrm{~N}}{285 \mathrm{~mm} \cdot 0.005752 \mathrm{MPa}}$

Variables Used

- A Cross-Sectional Area of Beam (Square Millimeter)
- $\mathbf{A}_{\mathbf{s}}$ Cross-Sectional Area of Tensile Reinforcing (Square Millimeter)
- $\mathbf{A}_{\mathbf{V}}$ Cross-Sectional Area of Web Reinforcement (Square Millimeter)
- b Width of Beam (Millimeter)
- d Effective Depth of Beam (Millimeter)
- E_{c} Modulus of Elasticity of Concrete (Megapascal)
- $\mathbf{f}_{\mathbf{c}}$ Compressive Stress in Extreme Fiber of Concrete (Megapascal)
- $\mathbf{f}_{\mathbf{s}}$ Stress in Reinforcement (Megapascal)
- $\mathbf{f}_{\mathbf{V}}$ Allowable Unit Stress in Web Reinforcement (Megapascal)
- G Shear Modulus (Megapascal)
- I Moment of Inertia (Kilogram Square Meter)
- J Ratio of Distance between Centroid
- k Ratio of Depth
- $\mathbf{k}_{\mathbf{b}}$ Beam Loading Constant
- $\mathbf{k}_{\mathbf{s}}$ Support Condition Constant
- I Beam Span (Millimeter)
- M Bending Moment (Kilonewton Meter)
- P Ratio of Cross-Sectional Area
- s Stirrup Spacing (Millimeter)
- $\mathrm{T}_{\mathbf{I}}$ Total Beam Load (Kilonewton)
- V Shearing Unit Stress (Megapascal)
- V Total Shear (Newton)
- V' Shear that Concrete should carry (Newton)
- $\bar{\delta}$ Deflection of Beam (Millimeter)

Constants, Functions, Measurements used

- Measurement: Length in Millimeter (mm) Length Unit Conversion
- Measurement: Area in Square Millimeter (mm²) Area Unit Conversion
- Measurement: Pressure in Megapascal (MPa) Pressure Unit Conversion
- Measurement: Force in Kilonewton (kN), Newton (N) Force Unit Conversion $\sqrt{ }$
- Measurement: Moment of Inertia in Kilogram Square Meter (kg•m²) Moment of Inertia Unit Conversion
- Measurement: Moment of Force in Kilonewton Meter (kN*m) Moment of Force Unit Conversion
- Measurement: Stress in Megapascal (MPa) Stress Unit Conversion

Check other formula lists

- Beams, Columns and Other Members Design Methods Formulas
- Deflection Computations, Column Moments and Torsion Formulas
- Frames and Flat Plate Formulas
- Mix Design, Modulus of Elasticity and Tensile Strength of Concrete Formulas
- Working Stress Design Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

[^0]: ex $285.5677 \mathrm{~mm}=\frac{(500.00 \mathrm{~N}-495 \mathrm{~N}) \cdot 50.1 \mathrm{~mm}}{100 \mathrm{MPa} \cdot 8772 \mathrm{~mm}^{2}}$

