
calculatoratoz.com

unitsconverters.com

Photon and Atomic Physics Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 18 Photon and Atomic Physics Formulas

Photon and Atomic Physics ©

Atomic Structure

1) Angle between Incident Ray and Scattering Planes in X-ray Diffraction $\boxed{\square}$
$\mathbf{f x} \theta=a \sin \left(\frac{\mathrm{n}_{\text {order }} \cdot \lambda_{\mathrm{x} \text {-ray }}}{2 \cdot \mathrm{~d}}\right)$
ex $40.0052^{\circ}=a \sin \left(\frac{2 \cdot 0.45 \mathrm{~nm}}{2 \cdot 0.7 \mathrm{~nm}}\right)$
2) Energy in Nth Bohr's Orbit
$f x E_{n}=-\frac{13.6 \cdot\left(Z^{2}\right)}{n_{\text {level }}^{2}}$
ex $-408.990635 \mathrm{~J}=-\frac{13.6 \cdot\left((17)^{2}\right)}{(3.1)^{2}}$
3) Minimum Wavelength in X-ray Spectrum

$$
\begin{aligned}
& f x \lambda_{\min }=\mathrm{h} \cdot 3 \cdot \frac{10^{8}}{1.60217662 \cdot 10^{-19} \cdot \mathrm{v}} \\
& \mathrm{ex} 1 \mathrm{E}^{\wedge} 35 \mathrm{~nm}=6.63 \cdot 3 \cdot \frac{10^{8}}{1.60217662 \cdot 10^{-19} \cdot 120 \mathrm{~V}}
\end{aligned}
$$

4) Moseley's Law
$\mathrm{fx}_{\mathrm{x}} \mathrm{v}_{\mathrm{sqrt}}=\mathrm{a} \cdot(\mathrm{Z}-\mathrm{b})$
Open Calculator
ex $15=3 \cdot(17-12)$
5) Photon Energy in State Transition
$\mathrm{fx} \mathrm{E}_{\gamma}=\mathrm{h} \cdot \mathrm{v}_{\text {photon }}$
ex $1 \mathrm{E}^{\wedge} 36 \mathrm{~J}=6.63 \cdot 1.56 \mathrm{E} 35 \mathrm{~Hz}$
6) Quantization of Angular Momentum
$f_{\mathrm{x}} \mathrm{l}_{\mathrm{Q}}=\frac{\mathrm{n} \cdot \mathrm{h}}{2 \cdot \pi}$
ex $22.05362=\frac{20.9 \cdot 6.63}{2 \cdot \pi}$
7) Radius of Nth Bohr's Orbit

$$
\begin{aligned}
& f \mathrm{x} \times \frac{\mathrm{n}^{2} \cdot 0.529 \cdot 10^{-10}}{\mathrm{Z}} \\
& \mathrm{ex} 1.4 \mathrm{E}^{\wedge}-9 \mathrm{~m}=\frac{(20.9)^{2} \cdot 0.529 \cdot 10^{-10}}{17}
\end{aligned}
$$

8) Spacing between Atomic Lattice Planes in X-ray Diffraction

$$
\mathrm{fx}_{\mathrm{x}}^{\mathrm{d}}=\frac{\mathrm{n}_{\text {order }} \cdot \lambda_{\mathrm{x}-\mathrm{ray}}}{2 \cdot \sin (\theta)}
$$

ex $0.700076 \mathrm{~nm}=\frac{2 \cdot 0.45 \mathrm{~nm}}{2 \cdot \sin \left(40^{\circ}\right)}$
9) Wavelength in X-ray Diffraction
$f \mathrm{x} \lambda_{\mathrm{x} \text {-ray }}=\frac{2 \cdot \mathrm{~d} \cdot \sin (\theta)}{\mathrm{n}_{\text {order }}}$
ex
$0.449951 \mathrm{~nm}=\frac{2 \cdot 0.7 \mathrm{~nm} \cdot \sin \left(40^{\circ}\right)}{2}$
10) Wavelength of Emitted Radiation for Transition between States

ex $2.162176 \mathrm{~nm}=\frac{1}{[\text { Rydberg }] \cdot(17)^{2} \cdot\left(\frac{1}{(2.4)^{2}}-\frac{1}{(6)^{2}}\right)}$

Photoelectric Effect

11) De Broglie Wavelength
$\mathrm{fx} \lambda=\frac{[\mathrm{hP}]}{\mathrm{p}}$
p
ex $2.109542 \mathrm{~nm}=\frac{[\mathrm{hP}]}{3.141 \mathrm{E}^{\wedge}-25 \mathrm{~kg}^{*} \mathrm{~m} / \mathrm{s}}$
12) Maximum Kinetic Energy of Ejected Photo-Electron
fx $K_{\text {max }}=[h P] \cdot v_{\text {photon }}-\phi$
Open Calculator
ex 103.3667J $=[\mathrm{hP}] \cdot 1.56 \mathrm{E} 35 \mathrm{~Hz}-9.4 \mathrm{E}^{\wedge}-17 \mathrm{~J}$
13) Photon's Energy using Frequency
fx $K_{\text {max }}=[\mathrm{hP}] \cdot \mathrm{v}_{\text {photon }}$
Open Calculator
ex $103.3667 \mathrm{~J}=[\mathrm{hP}] \cdot 1.56 \mathrm{E} 35 \mathrm{~Hz}$

苚
14) Photon's Energy using Wavelength
$f_{x} \mathrm{E}=\frac{[\mathrm{hP}] \cdot[\mathrm{c}]}{\lambda}$

Open Calculator

ex $9.5 \mathrm{E}^{\wedge}-17 \mathrm{~J}=\frac{[\mathrm{hP}] \cdot[\mathrm{c}]}{2.1 \mathrm{~nm}}$
15) Photon's Momentum using Energy
$\mathrm{fx} \mathrm{p}=\frac{\mathrm{E}}{[\mathrm{c}]}$
Open Calculator
ex $3.1 \mathrm{E}^{\wedge}-25 \mathrm{~kg}^{*} \mathrm{~m} / \mathrm{s}=\frac{9.41 \mathrm{E}^{\wedge}-17 \mathrm{~J}}{[\mathrm{c}]}$
16) Photon's Momentum using Wavelength
$f \mathbf{x} p=\frac{[\mathrm{hP}]}{\lambda}$
Open Calculator
ex $3.2 \mathrm{E}^{\wedge}-25 \mathrm{~kg}^{*} \mathrm{~m} / \mathrm{s}=\frac{[\mathrm{hP}]}{2.1 \mathrm{~nm}}$
17) Stopping Potential
$f \times \mathrm{V}_{0}=\frac{[\mathrm{hP}] \cdot[\mathrm{c}]}{[\text { Charge-e }]} \cdot\left(\frac{1}{\lambda}\right)-\frac{\phi}{[\text { Charge-e }]}$
ex $3.699082 \mathrm{~V}=\frac{[\mathrm{hP}] \cdot[\mathrm{c}]}{[\text { Charge-e }]} \cdot\left(\frac{1}{2.1 \mathrm{~nm}}\right)-\frac{9.4 \mathrm{E}^{\wedge}-17 \mathrm{~J}}{[\text { Charge-e }]}$

18) Threshold Frequency in Photoelectric Effect

$\mathrm{fx}_{\mathrm{x}} \mathrm{v}_{0}=\frac{\phi}{[\mathrm{hP}]}$
ex $1.4 \mathrm{E}^{\wedge} 17 \mathrm{~Hz}=\frac{9.4 \mathrm{E}^{\wedge}-17 \mathrm{~J}}{[\mathrm{hP}]}$

Variables Used

- a Constant A
- b Constant B
- d Interplanar Spacing (Nanometer)
- E Photon Energy (Joule)
- E_{n} Energy in nth Bohr's Unit (Joule)
- E_{Y} Photon Energy in State Transition (Joule)
- h Plancks Constant
- $\mathrm{K}_{\text {max }}$ Max Kinetic Energy (Joule)
- I_{Q} Quantization of Angular Momentum
- \mathbf{n} Quantum Number
- $\mathbf{N}_{\mathbf{1}}$ Energy State n 1
- $\mathbf{N}_{\mathbf{2}}$ Energy State n2
- $\mathbf{n}_{\text {level }}$ Number of Level in Orbit
- $\mathbf{n}_{\text {order }}$ Order of Reflection
- p Photon's Momentum (Kilogram Meter per Second)
- \mathbf{r} Radius of nth Orbit (Meter)
- V Voltage (Volt)
- $\mathbf{v}_{\mathbf{0}}$ Threshold Frequency (Hertz)
- $\mathbf{V}_{\mathbf{0}}$ Stopping Potential (Volt)
- $\mathbf{V}_{\text {photon }}$ Frequency of Photon (Hertz)
- $\mathbf{V}_{\text {sqrt }}$ Moseley Law
- Z Atomic Number
- $\boldsymbol{\theta}$ Angle b/w Incident and Reflected X-Ray (Degree)
- $\boldsymbol{\lambda}$ Wavelength (Nanometer)
- $\boldsymbol{\lambda}_{\text {min }}$ Minimum Wavelength (Nanometer)
- $\boldsymbol{\lambda}_{\mathbf{x} \text {-ray }}$ Wavelength of X-ray (Nanometer)
- $\boldsymbol{\phi}$ Work Function (Joule)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [Charge-e], 1.60217662E-19

Charge of electron

- Constant: [c], 299792458.0

Light speed in vacuum

- Constant: [hP], 6.626070040E-34

Planck constant

- Constant: [Rydberg], 10973731.6

Rydberg Constant

- Function: asin, asin(Number)

The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.

- Function: sin, $\sin ($ Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Energy in Joule (J)

Energy Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Frequency in Hertz (Hz)

Frequency Unit Conversion

- Measurement: Wavelength in Nanometer (nm) Wavelength Unit Conversion
- Measurement: Electric Potential in Volt (V)

Electric Potential Unit Conversion

- Measurement: Momentum in Kilogram Meter per Second (kg*m/s) Momentum Unit Conversion 〔

Check other formula lists

- Nuclear Physics and Transistors - Photon and Atomic Physics Formulas Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

