

Photon and Atomic Physics Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 18 Photon and Atomic Physics Formulas

2/12

Photon and Atomic Physics 🕑

Atomic Structure 🕑

1) Angle between Incident Ray and Scattering Planes in X-ray Diffraction

fx
$$\theta = a \sin\left(\frac{n_{order} \cdot \lambda_{x-ray}}{2 \cdot d}\right)$$
ex
$$40.0052^{\circ} = a \sin\left(\frac{2 \cdot 0.45nm}{2 \cdot 0.7nm}\right)$$
2) Energy in Nth Bohr's Orbit C
fx
$$E_n = -\frac{13.6 \cdot (Z^2)}{n_{level}^2}$$
Open Calculator C
fx
$$ex -408.990635J = -\frac{13.6 \cdot ((17)^2)}{(3.1)^2}$$

10) Wavelength of Emitted Radiation for Transition between States

$$\lambda = \frac{1}{[\operatorname{Rydberg}] \cdot Z^2 \cdot \left(\frac{1}{N_1^2} - \frac{1}{N_2^2}\right)}$$

$$2.162176nm = \frac{1}{[\operatorname{Rydberg}] \cdot (17)^2 \cdot \left(\frac{1}{(2.4)^2} - \frac{1}{(6)^2}\right)}$$
Photoelectric Effect C
11) De Broglie Wavelength C
11) De Broglie Wavelength C
(x) $\lambda = \frac{[hP]}{p}$
(open Calculator C
(x) $\lambda = \frac{[hP]}{3.141E^2 \cdot 25kg^*m/s}$
12) Maximum Kinetic Energy of Ejected Photo-Electron C
(x) $K_{max} = [hP] \cdot v_{photon} - \phi$
(open Calculator C
(x) $K_{max} = [hP] \cdot 1.56E35Hz - 9.4E^2 - 17J$
13) Photon's Energy using Frequency C
(x) $K_{max} = [hP] \cdot v_{photon}$
(x) $103.3667J = [hP] \cdot 1.56E35Hz$
(x) $M_{max} = [hP] \cdot v_{photon}$
(x) $103.3667J = [hP] \cdot 1.56E35Hz$

14) Photon's Energy using Wavelength 💪

18) Threshold Frequency in Photoelectric Effect 子

Variables Used

- a Constant A
- **b** Constant B
- d Interplanar Spacing (Nanometer)
- E Photon Energy (Joule)
- Energy in nth Bohr's Unit (Joule)
- E_v Photon Energy in State Transition (Joule)
- h Plancks Constant
- K_{max} Max Kinetic Energy (Joule)
- IQ Quantization of Angular Momentum
- **n** Quantum Number
- N₁ Energy State n1
- N₂ Energy State n2
- n_{level} Number of Level in Orbit
- norder Order of Reflection
- p Photon's Momentum (Kilogram Meter per Second)
- **r** Radius of nth Orbit (Meter)
- V Voltage (Volt)
- V₀ Threshold Frequency (Hertz)
- V₀ Stopping Potential (Volt)
- Vphoton Frequency of Photon (Hertz)
- V_{sqrt} Moseley Law
- Z Atomic Number

- **θ** Angle b/w Incident and Reflected X-Ray (Degree)
- **λ** Wavelength (Nanometer)
- λ_{min} Minimum Wavelength (Nanometer)
- λ_{x-ray} Wavelength of X-ray (Nanometer)
- **Φ** Work Function (Joule)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Constant: [Charge-e], 1.60217662E-19 Charge of electron
- Constant: [c], 299792458.0 Light speed in vacuum
- Constant: [hP], 6.626070040E-34 *Planck constant*
- Constant: [Rydberg], 10973731.6 Rydberg Constant
- Function: **asin**, asin(Number) The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.
- Function: sin, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Energy in Joule (J) Energy Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Frequency in Hertz (Hz) Frequency Unit Conversion
- Measurement: Wavelength in Nanometer (nm) Wavelength Unit Conversion

- Measurement: Electric Potential in Volt (V) Electric Potential Unit Conversion
- Measurement: Momentum in Kilogram Meter per Second (kg*m/s)
 Momentum Unit Conversion

12/12

Check other formula lists

Nuclear Physics and Transistors
 Photon and Atomic Physics
 Formulas
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/22/2024 | 9:25:46 AM UTC

Please leave your feedback here ...

