

Wave Optics Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

Open Calculator 🚰

Open Calculator

Open Calculator

Open Calculator

List of 28 Wave Optics Formulas

Wave Optics &

Basics

1) Angular Width of Central Maxima

2) Malus Law

fx
$$I = I_1 \cdot (\cos(heta))^2$$

$$ext{ex} \ 7.392544 ext{cd} = 9 ext{cd} \cdot (\cos(25°))^2$$

3) Optical Activity

$$lpha = rac{ heta}{ ext{L} \cdot ext{C}_{ ext{x}}}$$

$$= 25^{\circ}$$

$$3.116659 = \frac{25^{\circ}}{35 \text{cm} \cdot 0.4}$$

4) Path Difference of Two Progressive Wave

$$\Delta x = rac{\lambda \cdot \Phi}{2 \cdot \pi}$$

5) Phase Difference

 $\Phi = rac{2 \cdot \pi \cdot \Delta \mathbf{x}}{1}$

Open Calculator 🚰

$$\mathbf{ex}$$
 671.6418° = $\frac{2 \cdot \pi \cdot 50 \text{cm}}{26.8 \text{cm}}$

6) Phase Difference of Constructive Interference

fx $\Phi = 2 \cdot \pi \cdot n$

Open Calculator

$$\boxed{1800°=2\cdot\pi\cdot5}$$

7) Phase Difference of Destructive Interference

fx $\Phi = (2 \cdot n + 1) \cdot \pi$

Open Calculator

ex
$$1980\degree=(2\cdot 5+1)\cdot \pi$$

Interference of Waves of Two Intensities

8) Intensity of Constructive Interference 🗗

 $extbf{I} = \left(\sqrt{ ext{I}_1} + \sqrt{ ext{I}_2}
ight)^2$

Open Calculator

9) Intensity of Destructive Interference

 $\mathrm{I} = \left(\sqrt{\mathrm{I}_1} - \sqrt{\mathrm{I}_2}
ight)^2$

Open Calculator

$$\boxed{\textbf{ex}} \ 1.544156 \text{cd} = \left(\sqrt{9 \text{cd}} - \sqrt{18 \text{cd}}\right)^2$$

10) Interference of Waves of Two Intensities

$I = I_1 + I_2 + 2 \cdot \sqrt{I_1 \cdot I_2} \cdot \cos(\Phi)$

Open Calculator 🗗

Optical Path Difference

11) Optical Path Difference

fx
$$\Delta = (\mathrm{RI} - 1) \cdot rac{\mathrm{D}}{\mathrm{d}}$$

Open Calculator

12) Optical Path Difference given Fringe Width

Open Calculator 🗗

$$0.024751 = (1.333 - 1) \cdot 12 \text{cm} \cdot \frac{16.6 \text{cm}}{26.8 \text{cm}}$$

Thin-Film Interference 🗗

13) Thin-Film Constructive Interference in Reflected Light

$$I_{
m c} = \left({
m n} + rac{1}{2}
ight) \cdot \lambda$$

$$\boxed{1.474 = \left(5 + \frac{1}{2}\right) \cdot 26.8 \mathrm{cm}}$$

14) Thin-Film Constructive Interference in Transmitted Light

fx
$$I_c = n \cdot \lambda$$

$$1.34 = 5 \cdot 26.8 \text{cm}$$

15) Thin-Film Destructive Interference in Reflected Light

fx $I_d = n \cdot \lambda$

Open Calculator 🗗

 $\boxed{\textbf{ex} \ 1.34 = 5 \cdot 26.8 \text{cm}}$

16) Thin-Film Destructive Interference in Transmitted Light

 $\mathbf{I}_{\mathrm{d}} = \left(\mathrm{n} + rac{1}{2}
ight) \cdot \lambda$

Open Calculator

 $\boxed{1.474 = \left(5 + \frac{1}{2}\right) \cdot 26.8 \mathrm{cm}}$

Young's Double-Slit Experiment (YDSE)

17) Distance from Center to Light Source for Constructive Interference in YDSE

 $\boxed{\mathbf{fx}} \mathbf{y} = \frac{\mathbf{n} \cdot \lambda \cdot \mathbf{D}}{\mathbf{d}}$

Open Calculator

ex 255.3585cm = $\frac{5 \cdot 26.8$ cm $\cdot 20.2$ cm 10.6cm

18) Distance from Center to Light Source for Destructive Interference in YDSE

 $\mathbf{x} = (2 \cdot \mathbf{n} - 1) \cdot \frac{\lambda \cdot \mathbf{D}}{2 \cdot \mathbf{d}}$

Open Calculator

19) Fringe Width

 $\beta = \frac{\lambda \cdot D}{d}$

Open Calculator

20) Resultant Intensity of Incoherent Sources

fx $\mathrm{I}=\mathrm{I}_1+\mathrm{I}_2$

Open Calculator 🛂

27cd = 9cd + 18cd

21) Resultant Intensity On-Screen of YDSE when Intensities are Different

fx $I = I_1 + I_2 + 2 \cdot \sqrt{I_1 \cdot I_2} \cdot \cos(\Phi)$

Open Calculator

22) Resultant Intensity On-Screen of Young's Double-Slit Experiment

 $I=4\cdot I_1\cdot \left(\cos\left(rac{\Phi}{2}
ight)
ight)^2$

Open Calculator

ex 32.08695cd = $4 \cdot 9$ cd $\cdot \left(\cos \left(\frac{38.5^{\circ}}{2} \right) \right)^2$

Path Difference in YDSE

23) Path Difference for Constructive Interference in YDSE

 $\Delta x = rac{y \cdot d}{D}$

Open Calculator

 $= \frac{2.5 \text{cm} \cdot 10.6 \text{cm}}{20.2 \text{cm}}$

24) Path Difference for Destructive Interference in YDSE

 $y = (2 \cdot n + 1) \cdot \frac{\lambda}{2}$

ex 147.4cm = $(2 \cdot 5 + 1) \cdot \frac{26.8$ cm

25) Path Difference for Maxima in YDSE

fx $\Delta {
m x} = {
m n} \cdot {
m \lambda}$

Open Calculator 🚰

 $\boxed{\textbf{ex}} \ 134 \text{cm} = 5 \cdot 26.8 \text{cm}$

26) Path Difference for Minima in YDSE

 $\Delta \mathbf{x} = (2 \cdot \mathbf{n} + 1) \cdot rac{\lambda}{2}$

Open Calculator

- ex 147.4cm = $(2 \cdot 5 + 1) \cdot \frac{26.8$ cm 2
- 27) Path Difference in YDSE given Distance between Coherent Sources
- $\Delta \mathbf{x} = \mathbf{d} \cdot \sin(\mathbf{\theta})$

Open Calculator

- $4.479754 \text{cm} = 10.6 \text{cm} \cdot \sin(25^{\circ})$
- 28) Path Difference in Young's Double-Slit Experiment
- $\Delta \mathrm{x} = \sqrt{\left(\mathrm{y} + rac{\mathrm{d}}{2}
 ight)^2 + \mathrm{D}^2} \sqrt{\left(\mathrm{y} rac{\mathrm{d}}{2}
 ight)^2 + \mathrm{D}^2}$

Open Calculator

ex

$$\boxed{1.260501 \text{cm} = \sqrt{\left(2.5 \text{cm} + \frac{10.6 \text{cm}}{2}\right)^2 + \left(20.2 \text{cm}\right)^2 - \sqrt{\left(2.5 \text{cm} - \frac{10.6 \text{cm}}{2}\right)^2 + \left(20.2 \text{cm}\right)^2}}$$

Variables Used

- a Aperture of Objective
- C_x Concentration at x Distance
- **d** Distance between Two Coherent Sources (Centimeter)
- D Distance between Slits and Screen (Centimeter)
- dangular Angular Width (Degree)
- I Resultant Intensity (Candela)
- I₁ Intensity 1 (Candela)
- l₂ Intensity 2 (Candela)
- Ic Constructive Interference
- Id Destructive Interference
- L Length (Centimeter)
- n Number n
- RI Refractive Index
- **t** Thickness (Centimeter)
- y Distance from Center to Light Source (Centimeter)
- α Optical Activity
- β Fringe Width (Centimeter)
- ▲ Optical Path Difference
- Δx Path Difference (Centimeter)
- **θ** Angle from Slit Center to Light Source (*Degree*)
- λ Wavelength (Centimeter)
- Φ Phase Difference (Degree)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

 Archimedes' constant
- Function: cos, cos(Angle)

 Trigonometric cosine function
- Function: sin, sin(Angle)
 Trigonometric sine function
- Function: sqrt, sqrt(Number) Square root function
- Measurement: Length in Centimeter (cm)
 Length Unit Conversion
- Measurement: Luminous Intensity in Candela (cd)
 Luminous Intensity Unit Conversion
- Measurement: Angle in Degree (°)

 Angle Unit Conversion

Check other formula lists

- Current Electricity Formulas
- Elasticity & Simple Harmonic Motion(SHM) Theory of Elasticity Formulas Formulas 🚰
- Gravitation Formulas
- Microscopes and Telescopes Formulas
- Optics Formulas
- Tribology Formulas
- Wave Optics Formulas
- Waves And Sound Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/17/2023 | 8:22:43 AM UTC

Please leave your feedback here...

