

Maximum Velocity of the Follower Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 11 Maximum Velocity of the Follower Formulas

Maximum Velocity of the Follower

1) Max Velocity of Follower for Tangent Cam with Roller Follower

$$\boxed{ 80.09146 \text{m/s} = 27 \text{rad/s} \cdot (3 \text{m} + 31 \text{m}) \cdot \frac{\sin(0.0867 \text{rad})}{\cos(0.0867 \text{rad})^2} }$$

- 2) Maximum Velocity of Follower during Outstroke at Uniform Acceleration
- $\left[\mathbf{K} \middle[\mathbf{V}_{\mathrm{m}} = rac{2 \cdot \mathbf{S} \cdot \mathbf{\omega}}{\mathbf{ heta}_{\mathrm{o}}}
 ight]$
- $oxed{ex}80 \mathrm{m/s} = rac{2 \cdot 20 \mathrm{m} \cdot 27 \mathrm{rad/s}}{13.50 \mathrm{rad}}$

Open Calculator

3) Maximum Velocity of Follower during Outstroke at Uniform Acceleration given Time of Out Stroke

Open Calculator 🚰

$$= 80 \mathrm{m/s} = \frac{2 \cdot 20 \mathrm{m}}{0.50 \mathrm{s}}$$

4) Maximum Velocity of Follower during Outstroke for Cycloidal Motion

Open Calculator

$$oxed{ex} 80 \mathrm{m/s} = rac{2 \cdot 27 \mathrm{rad/s} \cdot 20 \mathrm{m}}{13.50 \mathrm{rad}}$$

5) Maximum Velocity of Follower during Return Stroke at Uniform Acceleration given Time of Stroke

Open Calculator 🚰

$$\boxed{80 \text{m/s} = \frac{2 \cdot 20 \text{m}}{0.5 \text{s}}}$$

6) Maximum Velocity of Follower during Return Stroke for Cycloidal Motion

 $V_{
m m} = rac{2 \cdot \omega \cdot S}{ heta_{
m R}}$

Open Calculator

7) Maximum Velocity of Follower during Return Stroke for Uniform Acceleration

 $ag{fx} V_{
m m} = rac{2 \cdot {
m S} \cdot {
m \omega}}{ heta_{
m R}}$

Open Calculator 🗗

 $extbf{ex} 80 ext{m/s} = rac{2 \cdot 20 ext{m} \cdot 27 ext{rad/s}}{13.5 ext{rad}}$

8) Maximum Velocity of Follower for Circular Arc Cam Contacting with Circular Flank

 $ag{K} V_{
m m} = \omega \cdot ({
m R} - {
m r}_1) \cdot \sin(2lpha)$

Open Calculator 🗗

 $\texttt{ex} \left[80.08657 \text{m/s} = 27 \text{rad/s} \cdot (5.97 \text{m} - 3 \text{m}) \cdot \sin(1.52 \text{rad})\right]$

9) Maximum Velocity of Follower on Outstroke given Time Stroke

Open Calculator

$$\mathbf{ex} = \frac{\pi \cdot 20 \text{m}}{2 \cdot 0.50 \text{s}}$$

10) Maximum Velocity of Follower on Outstroke when Follower Moves with SHM

 $\left| \mathbf{V}_{\mathrm{m}} = rac{\pi \cdot \mathbf{S} \cdot \mathbf{\omega}}{2 \cdot \mathbf{ heta}_{\mathrm{o}}}
ight|$

Open Calculator

 $oxed{ex} 62.83185 ext{m/s} = rac{\pi \cdot 20 ext{m} \cdot 27 ext{rad/s}}{2 \cdot 13.50 ext{rad}}$

11) Maximum Velocity of Follower on Return Stroke when Follower Moves with SHM

 $\left| \mathbf{V}_{\mathrm{m}} = rac{\pi \cdot \mathbf{S} \cdot \mathbf{\omega}}{2 \cdot \mathbf{ heta}_{\mathrm{R}}}
ight|$

Open Calculator

Variables Used

- 2α Total Angle of Action of Cam (Radian)
- R Radius of Circular Flank (Meter)
- r₁ Radius of The Base Circle (Meter)
- r_r Radius of Roller (Meter)
- **S** Stroke of Follower (Meter)
- to Time Required For The Outstroke (Second)
- t_R Time Required For The Return Stroke (Second)
- V_m Maximum Velocity of Follower (Meter per Second)
- θ_Ω Angular Displacement of Cam During Out Stroke (Radian)
- θ_R Angular Displacement of Cam During Return Stroke (Radian)
- • Angle Turned By The Cam For Contact of Roller (Radian)
- ω Angular Velocity of Cam (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: cos, cos(Angle)
 Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.
- Function: sin, sin(Angle)

 Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Angle in Radian (rad)
 Angle Unit Conversion
- Measurement: Angular Velocity in Radian per Second (rad/s)
 Angular Velocity Unit Conversion

Check other formula lists

- Acceleration of the Follower Formulas
- Maximum Velocity of the Follower Formulas
- Cam and Follower Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/30/2024 | 4:10:14 PM UTC

Please leave your feedback here...

