

Force Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

Force Formulas...

List of 15 Force Formulas

1.1m

8) Normal Force for Shoe Brake if Line of Action of Tangential Force Passes above Fulcrum (Clockwise)

fx
$$Fn = rac{P \cdot l}{x - \mu_{brake} \cdot a_{shift}}$$

ex $45.41935N = rac{32N \cdot 1.1m}{2m - 0.35 \cdot 3.5m}$

9) Normal Force for Shoe Brake if Line of Action of Tangential Force Passes below Fulcrum (Anti Clock)

fx
$$Fn = \frac{P \cdot l}{x - \mu_{brake} \cdot a_{shift}}$$

ex $45.41935N = \frac{32N \cdot 1.1m}{2m - 0.35 \cdot 3.5m}$

Open Calculator 🕑

Open Calculator

10) Normal Force for Shoe Brake if Line of Action of Tangential Force Passes below Fulcrum (Clockwise)

$$\label{eq:Fn} \begin{split} \text{Fn} &= \frac{P \cdot l}{x + \mu_{brake} \cdot a_{shift}} \\ \text{ex} & 10.91473N = \frac{32N \cdot 1.1m}{2m + 0.35 \cdot 3.5m} \end{split}$$

11) Normal Force Pressing Brake Block on Wheel for Shoe Brake 🕑

15) Total Braking Force Acting at Rear Wheels when Brakes are Applied to Rear Wheels only

fx $\mathbf{F}_{\mathrm{braking}} = \mathbf{m} \cdot \mathbf{a} - \mathbf{m} \cdot \mathbf{g} \cdot \sin(lpha_{\mathrm{inclination}})$

Open Calculator 🕑

ex 4.005343N = 54.73kg $\cdot 8.955$ m/s² - 54.73kg $\cdot 9.8$ m/s² $\cdot sin(65°)$

Variables Used

- **a** Retardation of Vehicle (Meter per Square Second)
- a_{shift} Shift in Line of Action of Tangential Force (Meter)
- **b** Perpendicular Distance from Fulcrum (*Meter*)
- C Brake Clamp Load (Newton)
- Fbraking Braking Force (Newton)
- **F**_t Tangential Braking Force Acting Contact Surface (*Newton*)
- Fn Normal Force (Newton)
- g Acceleration due to Gravity (Meter per Square Second)
- I Distance b/w Fulcrum and End of Lever (Meter)
- **M** Mass of Vehicle (Kilogram)
- **n** Number of Friction Faces
- **P** Force Applied at the End of the Lever (Newton)
- R_A Normal Reaction between Ground and Front Wheel (Newton)
- R_B Normal Reaction between Ground and Rear Wheel (Newton)
- re Effective Radius (Meter)
- **R**_N Normal Force Pressing the Brake Block on the Wheel (*Newton*)
- rwheel Radius of Wheel (Meter)
- **T** Brake Torque (Newton Meter)
- **T₁** Tension in Tight Side of the Band (Newton)
- T₂ Tension in the Slack Side of Band (Newton)
- X Distance b/w Fulcrum and Axis of Wheel (Meter)
- α_{inclination} Angle of Inclination of Plane to Horizontal (Degree)

- µbrake Coefficient of Friction for Brake
- µ_f Disc Coefficient of Friction

Constants, Functions, Measurements used

- Function: sin, sin(Angle) Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Weight in Kilogram (kg) Weight Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²) Acceleration Unit Conversion
- Measurement: Force in Newton (N) Force Unit Conversion
- Measurement: Angle in Degree (°) Angle Unit Conversion
- Measurement: Torque in Newton Meter (N*m)
 Torque Unit Conversion

Check other formula lists

- Braking Torque Formulas G
- Dynamometer Formulas
- Force Formulas 🗹

- Retardation of the Vehicle Formulas
- Total Normal Reaction
 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/30/2024 | 3:58:51 PM UTC

Please leave your feedback here ...