
calculatoratoz.com

(1)

Friction Devices Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 27 Friction Devices Formulas

Friction Devices

Pivot Bearing ©

1) Frictional Torque on Conical Pivot Bearing by Uniform Pressure
$\mathrm{fx}_{\mathrm{x}} \mathrm{T}=\frac{\mu_{\text {friction }} \cdot \mathrm{W}_{\mathrm{t}} \cdot \mathrm{D}_{\text {shaft }} \cdot \mathrm{h}_{\text {Slant }}}{3}$
Open Calculator
ex $2.4 \mathrm{~N}^{*} \mathrm{~m}=\frac{0.4 \cdot 24 \mathrm{~N} \cdot 0.5 \mathrm{~m} \cdot 1.5 \mathrm{~m}}{3}$
2) Frictional Torque on Conical Pivot Bearing by Uniform Wear \longleftarrow
$\mathrm{fx} \mathrm{T}=\frac{\mu_{\text {friction }} \cdot W_{\mathrm{t}} \cdot \mathrm{D}_{\text {shaft }} \cdot \operatorname{cosec} \frac{\alpha}{2}}{2}$
Open Calculator
$2.379418 \mathrm{~N}^{*} \mathrm{~m}=\frac{0.4 \cdot 24 \mathrm{~N} \cdot 0.5 \mathrm{~m} \cdot \operatorname{cosec} \frac{0.5286 \mathrm{rad}}{2}}{2}$
3) Frictional Torque on Flat Pivot Bearing by Uniform Pressure

$\mathrm{fx} \mathrm{T}=\frac{2}{3} \cdot \mu_{\text {friction }} \cdot \mathrm{W}_{\mathrm{t}} \cdot \mathrm{R}$
ex $21.12 \mathrm{~N}^{*} \mathrm{~m}=\frac{2}{3} \cdot 0.4 \cdot 24 \mathrm{~N} \cdot 3.3 \mathrm{~m}$
4) Frictional Torque on Truncated Conical Pivot Bearing by Uniform Pressure
$\mathrm{fx} \mathrm{T}=\frac{2}{3} \cdot \mu_{\text {friction }} \cdot \mathrm{W}_{\mathrm{t}} \cdot \frac{\mathrm{r}_{1}^{3}-\mathrm{r}_{2}^{3}}{\mathrm{r}_{1}^{2}-\mathrm{r}_{2}^{2}}$

$$
\text { ex } 67.65714 \mathrm{~N}^{*} \mathrm{~m}=\frac{2}{3} \cdot 0.4 \cdot 24 \mathrm{~N} \cdot \frac{(8 \mathrm{~m})^{3}-(6 \mathrm{~m})^{3}}{(8 \mathrm{~m})^{2}-(6 \mathrm{~m})^{2}}
$$

5) Mean Radius of Collar
$f \times R_{\text {collar }}=\frac{R_{1}+R_{2}}{2}$
ex $0.04 \mathrm{~m}=\frac{0.050 \mathrm{~m}+0.03 \mathrm{~m}}{2}$
6) Pressure over Bearing Area of Flat Pivot Bearing
$f \mathrm{x} \mathrm{p}_{\mathrm{i}}=\frac{\mathrm{W}_{\mathrm{t}}}{\pi \cdot \mathrm{R}^{2}}$
ex $0.701509 \mathrm{~Pa}=\frac{24 \mathrm{~N}}{\pi \cdot(3.3 \mathrm{~m})^{2}}$
7) Torque Required to Overcome Friction at Collar
fx $\mathrm{T}=\mu_{\text {collar }} \cdot \mathrm{W}_{\text {load }} \cdot \mathrm{R}_{\text {collar }}$
Open Calculator
ex $0.1696 \mathrm{~N}^{*} \mathrm{~m}=0.16 \cdot 53 \mathrm{~N} \cdot 0.02 \mathrm{~m}$
8) Total Frictional Torque on Conical Pivot Bearing Considering Uniform Pressure
$\mathrm{fx}_{\mathrm{x}} \mathrm{T}=\mu_{\text {friction }} \cdot \mathrm{W}_{\mathrm{t}} \cdot \mathrm{D}_{\text {shaft }} \cdot \operatorname{cosec} \frac{\alpha}{3}$
0.5286 rad
ex $3.172558 \mathrm{~N}^{*} \mathrm{~m}=0.4 \cdot 24 \mathrm{~N} \cdot 0.5 \mathrm{~m} \cdot \operatorname{cosec}$
9) Total Frictional Torque on Conical Pivot Bearing Considering Uniform Wear when Slant Height of Cone $\boxed{\Omega}$
$\mathrm{fx}_{\mathrm{x}} \mathrm{T}=\frac{\mu_{\text {friction }} \cdot \mathrm{W}_{\mathrm{t}} \cdot \mathrm{h}_{\text {Slant }}}{2}$
Open Calculator
ex $7.2 \mathrm{~N}^{*} \mathrm{~m}=\frac{0.4 \cdot 24 \mathrm{~N} \cdot 1.5 \mathrm{~m}}{2}$
10) Total Frictional Torque on Flat Pivot Bearing Considering Uniform Wear
$\mathrm{fx} \mathrm{T}=\frac{\mu_{\text {friction }} \cdot \mathrm{W}_{\mathrm{t}} \cdot \mathrm{R}}{2}$
Open Calculator
ex $15.84 \mathrm{~N}^{*} \mathrm{~m}=\frac{0.4 \cdot 24 \mathrm{~N} \cdot 3.3 \mathrm{~m}}{2}$

11) Total Frictional Torque on Truncated Conical Pivot Bearing Considering Uniform Wear

$\mathrm{fx} \mathrm{T}=\mu_{\text {friction }} \cdot \mathrm{W}_{\mathrm{t}} \cdot \frac{\mathrm{r}_{1}+\mathrm{r}_{2}}{2}$
ex $67.2 \mathrm{~N}^{*} \mathrm{~m}=0.4 \cdot 24 \mathrm{~N} \cdot \frac{8 \mathrm{~m}+6 \mathrm{~m}}{2}$
12) Total Vertical Load Transmitted to Conical Pivot Bearing for Uniform Pressure
$f \times W_{t}=\pi \cdot\left(\frac{\mathrm{D}_{\text {shaft }}}{2}\right)^{2} \cdot \mathrm{p}_{\mathrm{i}}$
Open Calculator
ex $1.963495 \mathrm{~N}=\pi \cdot\left(\frac{0.5 \mathrm{~m}}{2}\right)^{2} \cdot 10 \mathrm{~Pa}$

Screw and Nut

13) Force at Circumference of Screw given Helix Angle and Coefficient of Friction
$\mathbf{f x} \mathbf{F}=\mathrm{W} \cdot\left(\frac{\sin (\psi)+\mu_{\text {friction }} \cdot \cos (\psi)}{\cos (\psi)-\mu_{\text {friction }} \cdot \sin (\psi)}\right)$
ex $63.89666 \mathrm{~N}=60 \mathrm{~kg} \cdot\left(\frac{\sin \left(25^{\circ}\right)+0.4 \cdot \cos \left(25^{\circ}\right)}{\cos \left(25^{\circ}\right)-0.4 \cdot \sin \left(25^{\circ}\right)}\right)$
14) Force at Circumference of Screw given Helix Angle and Limiting Angle $\boxed{\square}$
$f \mathrm{fx}=\mathrm{W}_{\text {load }} \cdot \tan (\psi+\Phi)$
ex $40.66833 \mathrm{~N}=53 \mathrm{~N} \cdot \tan \left(25^{\circ}+12.5^{\circ}\right)$
15) Helix Angle
$\mathrm{fx} \psi=a \tan \left(\frac{\mathrm{~L}}{\mathrm{C}}\right)$
Open Calculator
ex $0.054805^{\circ}=a \tan \left(\frac{0.011 \mathrm{~m}}{11.5 \mathrm{~m}}\right)$
16) Helix Angle for Multi-Threaded Screw
$\mathrm{fx} \psi=a \tan \left(\frac{\mathrm{n} \cdot \mathrm{P}_{\text {screw }}}{\pi \cdot \mathrm{d}}\right)$
Open Calculator
ex $89.865^{\circ}=a \tan \left(\frac{16 \cdot 5 \mathrm{~m}}{\pi \cdot 0.06 \mathrm{~m}}\right)$
17) Helix Angle for Single Threaded Screw
$\mathrm{fx}_{\mathrm{x}} \psi=a \tan \left(\frac{\mathrm{P}_{\text {screw }}}{\pi \cdot \mathrm{d}}\right)$
ex $87.84102^{\circ}=a \tan \left(\frac{5 \mathrm{~m}}{\pi \cdot 0.06 \mathrm{~m}}\right)$

18) Lead of Screw

$f \mathrm{x} L=\mathrm{P}_{\text {screw }} \cdot \mathrm{n}$
Open Calculator
ex $80 m=5 m \cdot 16$
19) Torque Required to Overcome Friction between Screw and Nut
$f \times \mathrm{T}=\mathrm{W}_{\text {load }} \cdot \tan (\psi+\Phi) \cdot \frac{\mathrm{d}}{2}$
ex $1.22005 \mathrm{~N}^{*} \mathrm{~m}=53 \mathrm{~N} \cdot \tan \left(25^{\circ}+12.5^{\circ}\right) \cdot \frac{0.06 \mathrm{~m}}{2}$
20) Torque Required to Overcome Friction between Screw and Nut during Lowering Load
$f_{\mathrm{x}} \mathrm{T}=\mathrm{W}_{\text {load }} \cdot \tan (\Phi-\psi) \cdot \frac{\mathrm{d}}{2}$
Open Calculator
ex $-0.352495 \mathrm{~N}^{*} \mathrm{~m}=53 \mathrm{~N} \cdot \tan \left(12.5^{\circ}-25^{\circ}\right) \cdot \frac{0.06 \mathrm{~m}}{2}$
21) Torque Required to Overcome Friction between Screw and Nut while Lowering Load
$f \mathrm{x} \mathrm{T}=\mathrm{W}_{\text {load }} \cdot \tan (\Phi-\psi) \cdot \frac{\mathrm{d}}{2}$
Open Calculator
ex $-0.352495 \mathrm{~N}^{*} \mathrm{~m}=53 \mathrm{~N} \cdot \tan \left(12.5^{\circ}-25^{\circ}\right) \cdot \frac{0.06 \mathrm{~m}}{2}$

Screw Jack ©

22) Efficiency of Screw Jack when Screw Friction as well as Collar Friction Considered
$\eta=\frac{\mathrm{W} \cdot \tan (\psi) \cdot \mathrm{d}}{\mathrm{W}_{\text {load }} \cdot \tan (\psi+\Phi) \cdot \mathrm{d}+\mu_{\text {collar }} \cdot \mathrm{W}_{\text {load }} \cdot \mathrm{R}_{\text {collar }}}$

$$
\text { ex } 0.643257=\frac{60 \mathrm{~kg} \cdot \tan \left(25^{\circ}\right) \cdot 0.06 \mathrm{~m}}{53 \mathrm{~N} \cdot \tan \left(25^{\circ}+12.5^{\circ}\right) \cdot 0.06 \mathrm{~m}+0.16 \cdot 53 \mathrm{~N} \cdot 0.02 \mathrm{~m}}
$$

23) Efficiency of Screw Jack when only Screw Friction is Considered
$\boldsymbol{f x} \eta=\frac{\tan (\psi)}{\tan (\psi+\Phi)}$
Open Calculator
ex $0.607704=\frac{\tan \left(25^{\circ}\right)}{\tan \left(25^{\circ}+12.5^{\circ}\right)}$
24) Force Required to Lower Load by Screw Jack given Weight of Load
$\mathbf{f x}_{\mathrm{F}}^{\mathrm{F}=\mathrm{W}_{\text {load }} \cdot \frac{\mu_{\text {friction }} \cdot \cos (\psi)-\sin (\psi)}{\cos (\psi)+\mu_{\text {friction }} \cdot \sin (\psi)}}$
Open Calculator 凹
ex $-2.961852 \mathrm{~N}=53 \mathrm{~N} \cdot \frac{0.4 \cdot \cos \left(25^{\circ}\right)-\sin \left(25^{\circ}\right)}{\cos \left(25^{\circ}\right)+0.4 \cdot \sin \left(25^{\circ}\right)}$

开
25) Force Required to Lower Load by Screw Jack given weight of load and Limiting angle
$f_{x} F=W_{\text {load }} \cdot \tan (\Phi-\psi)$
ex $-11.749817 \mathrm{~N}=53 \mathrm{~N} \cdot \tan \left(12.5^{\circ}-25^{\circ}\right)$
26) Ideal Effort to Raise Load by Screw Jack
$\mathrm{fx} \mathrm{P}_{\mathrm{o}}=\mathrm{W}_{\text {load }} \cdot \tan (\psi)$
ex $24.71431 \mathrm{~N}=53 \mathrm{~N} \cdot \tan \left(25^{\circ}\right)$
27) Maximum Efficiency of Screw Jack
$\mathrm{fx} \eta=\frac{1-\sin (\Phi)}{1+\sin (\Phi)}$
Open Calculator
ex $0.644142=\frac{1-\sin \left(12.5^{\circ}\right)}{1+\sin \left(12.5^{\circ}\right)}$

Variables Used

- C Circumference of Screw (Meter)
- d Mean Diameter of Screw (Meter)
- $\mathbf{D}_{\text {shaft }}$ Shaft Diameter (Meter)
- F Force Required (Newton)
- $\mathbf{h}_{\text {Slant }}$ Slant Height (Meter)
- L Lead of Screw (Meter)
- n Number of Threads
- $\mathbf{p}_{\mathbf{i}}$ Pressure Intensity (Pascal)
- $\mathbf{P}_{\mathbf{o}}$ Ideal Effort (Newton)
- $\mathbf{P}_{\text {screw }}$ Pitch (Meter)
- R Radius of Bearing Surface (Meter)
- \mathbf{r}_{1} Outer Radius of Bearing Surface (Meter)
- $\mathbf{R}_{\mathbf{1}}$ Outer Radius of Collar (Meter)
- \mathbf{r}_{2} Inner Radius of Bearing Surface (Meter)
- $\mathbf{R}_{\mathbf{2}}$ Inner Radius of Collar (Meter)
- $\mathbf{R}_{\text {collar }}$ Mean Radius of Collar (Meter)
- T Total Torque (Newton Meter)
- W Weight (Kilogram)
- W load $^{\text {Load (Newton) }}$
- $\mathbf{W}_{\mathbf{t}}$ Load Transmitted Over Bearing Surface (Newton)
- $\boldsymbol{\alpha}$ Semi Angle of Cone (Radian)
- η Efficiency
- $\mu_{\text {collar }}$ Coefficient of Friction for Collar
- $\mu_{\text {friction }}$ Coefficient of Friction
- $\boldsymbol{\Phi}$ Limiting Angle of Friction (Degree)
- $\boldsymbol{\Psi}$ Helix Angle (Degree)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: atan, atan(Number)

Inverse tan is used to calculate the angle by applying the tangent ratio of the angle, which is the opposite side divided by the adjacent side of the right triangle.

- Function: cos, $\cos ($ Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: cosec, cosec(Angle)

The cosecant function is a trigonometric function that is the reciprocal of the sine function.

- Function: sec, sec(Angle)

Secant is a trigonometric function that is defined ratio of the hypotenuse to the shorter side adjacent to an acute angle (in a right-angled triangle); the reciprocal of a cosine.

- Function: $\boldsymbol{\operatorname { s i n }}, \sin ($ Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Function: $\boldsymbol{\operatorname { t a n }}, \tan ($ Angle)

The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Weight in Kilogram (kg) Weight Unit Conversion
- Measurement: Pressure in Pascal (Pa)

Pressure Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Angle in Radian (rad), Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Torque in Newton Meter (N*m) Torque Unit Conversion E

Check other formula lists

- Friction Devices Formulas \mathcal{G}
- Gear Trains Formulas
- Kinematics of Motion Formulas
- Rotational Motion Formulas
- Simple Harmonic Motion Formulas
- Steam Engine Valves and Reversing Gears Formulas
- Turning Moment Diagrams and Flywheel Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/17/2024 | 7:59:19 AM UTC
Please leave your feedback here...

