Forces and Loads on Joint Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 11 Forces and Loads on Joint Formulas

Forces and Loads on Joint

1) Force on Cotter given Shear Stress in Cotter
$\mathrm{fx} L=2 \cdot \mathrm{t}_{\mathrm{c}} \cdot \mathrm{b} \cdot \tau_{\mathrm{co}}$
ex $50000.78 \mathrm{~N}=2 \cdot 21.478 \mathrm{~mm} \cdot 48.5 \mathrm{~mm} \cdot 24 \mathrm{~N} / \mathrm{mm}^{2}$
2) Load Taken by Cotter Joint Rod given Tensile Stress in Rod
$f \mathrm{x} L=\frac{\pi \cdot \mathrm{d}^{2} \cdot \sigma \mathrm{t}_{\mathrm{rod}}}{4}$
ex $50000.61 \mathrm{~N}=\frac{\pi \cdot(35.6827 \mathrm{~mm})^{2} \cdot 50 \mathrm{~N} / \mathrm{mm}^{2}}{4}$
3) Load Taken by Socket of Cotter Joint given Compressive Stress
$\mathrm{fx} \mathrm{L}=\sigma_{\text {cso }} \cdot\left(\mathrm{d}_{4}-\mathrm{d}_{2}\right) \cdot \mathrm{t}_{\mathrm{c}}$
ex $50000.78 \mathrm{~N}=58.20 \mathrm{~N} / \mathrm{mm}^{2} \cdot(80 \mathrm{~mm}-40 \mathrm{~mm}) \cdot 21.478 \mathrm{~mm}$
4) Load Taken by Socket of Cotter Joint given Shear Stress in Socket
$\mathrm{fx}_{\mathrm{x}} \mathrm{L}=2 \cdot\left(\mathrm{~d}_{4}-\mathrm{d}_{2}\right) \cdot \mathrm{c} \cdot \tau_{\mathrm{so}}$
ex $50000 \mathrm{~N}=2 \cdot(80 \mathrm{~mm}-40 \mathrm{~mm}) \cdot 25.0 \mathrm{~mm} \cdot 25 \mathrm{~N} / \mathrm{mm}^{2}$
5) Load Taken by Socket of Cotter Joint given Tensile Stress in Socket
$f \mathrm{x} L=\left(\sigma_{\mathrm{t}} \mathrm{so}\right) \cdot\left(\frac{\pi}{4} \cdot\left(\mathrm{~d}_{1}^{2}-\mathrm{d}_{2}^{2}\right)-\mathrm{t}_{\mathrm{c}} \cdot\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)\right)$
$50000.82 \mathrm{~N}=68.224 \mathrm{~N} / \mathrm{mm}^{2} \cdot\left(\frac{\pi}{4} \cdot\left((54 \mathrm{~mm})^{2}-(40 \mathrm{~mm})^{2}\right)-21.478 \mathrm{~mm} \cdot(54 \mathrm{~mm}-40 \mathrm{~mm})\right)$
6) Load Taken by Spigot of Cotter Joint given Compressive Stress in Spigot Considering Crushing Failure
$f \mathrm{fx}=\mathrm{t}_{\mathrm{c}} \cdot \mathrm{d}_{2} \cdot \sigma_{\mathrm{c} 1}$
ex $50000.78 \mathrm{~N}=21.478 \mathrm{~mm} \cdot 40 \mathrm{~mm} \cdot 58.2 \mathrm{~N} / \mathrm{mm}^{2}$
7) Load Taken by Spigot of Cotter Joint given Shear Stress in Spigot
$f \mathbf{f} \mathrm{~L}=2 \cdot \mathrm{~L}_{\mathrm{a}} \cdot \mathrm{d}_{2} \cdot \tau_{\mathrm{sp}}$
ex $50000.48 \mathrm{~N}=2 \cdot 23.5 \mathrm{~mm} \cdot 40 \mathrm{~mm} \cdot 26.596 \mathrm{~N} / \mathrm{mm}^{2}$
8) Maximum Load taken by Cotter Joint given Spigot Diameter, Thickness and Stress

む

$\mathrm{fx} \mathrm{L}=\left(\frac{\pi}{4} \cdot \mathrm{~d}_{2}^{2}-\mathrm{d}_{2} \cdot \mathrm{t}_{\mathrm{c}}\right) \cdot\left(\sigma_{\mathrm{t}} \mathrm{sp}\right)$
ex $50000.89 \mathrm{~N}=\left(\frac{\pi}{4} \cdot(40 \mathrm{~mm})^{2}-40 \mathrm{~mm} \cdot 21.478 \mathrm{~mm}\right) \cdot 125.783 \mathrm{~N} / \mathrm{mm}^{2}$
9) Permissible Shear Stress for Cotter ©
$\mathrm{fx} \tau_{\mathrm{p}}=\frac{\mathrm{P}}{2 \cdot \mathrm{~b} \cdot \mathrm{t}_{\mathrm{c}}}$
ex $719988.7 \mathrm{~N} / \mathrm{m}^{2}=\frac{1500 \mathrm{~N}}{2 \cdot 48.5 \mathrm{~mm} \cdot 21.478 \mathrm{~mm}}$
10) Permissible Shear Stress for Spigot
$\mathrm{fx} \tau_{\mathrm{p}}=\frac{\mathrm{P}}{2 \cdot \mathrm{a} \cdot \mathrm{d}_{\mathrm{ex}}}$
ex $957854.4 \mathrm{~N} / \mathrm{m}^{2}=\frac{1500 \mathrm{~N}}{2 \cdot 17.4 \mathrm{~mm} \cdot 45 \mathrm{~mm}}$
11) Tensile Stress in Spigot

$$
f \mathrm{x} \sigma_{\mathrm{t}}=\frac{\mathrm{P}}{\left(\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{ex}}^{2}\right)-\left(\mathrm{d}_{\mathrm{ex}} \cdot \mathrm{t}_{\mathrm{c}}\right)}
$$

ex $2.404149 \mathrm{~N} / \mathrm{mm}^{2}=\frac{1500 \mathrm{~N}}{\left(\frac{\pi}{4} \cdot(45 \mathrm{~mm})^{2}\right)-(45 \mathrm{~mm} \cdot 21.478 \mathrm{~mm})}$

Variables Used

- a Spigot Distance (Millimeter)
- b Mean Width of Cotter (Millimeter)
- C Axial Distance From Slot to End of Socket Collar (Millimeter)
- d Diameter of Rod of Cotter Joint (Millimeter)
- \mathbf{d}_{1} Outside Diameter of Socket (Millimeter)
- $\mathbf{d}_{\mathbf{2}}$ Diameter of Spigot (Millimeter)
- \mathbf{d}_{4} Diameter of Socket Collar (Millimeter)
- $\mathbf{d}_{\mathbf{e x}}$ External Diameter of Spigot (Millimeter)
- L Load on Cotter Joint (Newton)
- $\mathbf{L}_{\mathbf{a}}$ Gap between End of Slot to End of Spigot (Millimeter)
- P Tensile Force on Rods (Newton)
- $\mathbf{t}_{\mathbf{c}}$ Thickness of Cotter (Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{c} 1}$ Compressive Stress in Spigot (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\text {cso }}$ Compressive Stress In Socket (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{t}}$ Tensile Stress (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{t}} \mathbf{S O}$ Tensile Stress In Socket (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{t}} \mathbf{s p}$ Tensile Stress In Spigot (Newton per Square Millimeter)
- $\boldsymbol{\sigma} \mathbf{t}_{\text {rod }}$ Tensile Stress in Cotter Joint Rod (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{c o}}$ Shear Stress in Cotter (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{s o}}$ Shear Stress in Socket (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{s p}}$ Shear Stress in Spigot (Newton per Square Millimeter)
- $\tau_{\mathbf{p}}$ Permissible Shear Stress (Newton per Square Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Pressure in Newton per Square Meter ($\mathrm{N} / \mathrm{m}^{2}$) Pressure Unit Conversion
- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Stress in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Stress Unit Conversion

Check other formula lists

- Forces and Loads on Joint Formulas $\sqrt{ }$
- Joint Geometry and Dimensions

Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

