
calculatoratoz.com

Strength and Stress Formulas

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Strength and Stress Formulas

Strength and Stress

1) Bending Stress in Cotter of Cotter Joint
$f \times \sigma_{\mathrm{b}}=\left(3 \cdot \frac{\mathrm{~L}}{\mathrm{t}_{\mathrm{c}} \cdot \mathrm{b}^{2}}\right) \cdot\left(\frac{\mathrm{d}_{2}+2 \cdot \mathrm{~d}_{4}}{12}\right)$
Open Calculator 〔
ex $49.48376 \mathrm{~N} / \mathrm{mm}^{2}=\left(3 \cdot \frac{50000 \mathrm{~N}}{21.478 \mathrm{~mm} \cdot(48.5 \mathrm{~mm})^{2}}\right) \cdot\left(\frac{40 \mathrm{~mm}+2 \cdot 80 \mathrm{~mm}}{12}\right)$
2) Compressive Stress in Socket of Cotter Joint given Diameter of Spigot and of Socket Collar
$f \mathrm{fx} \sigma_{\mathrm{cso}}=\frac{\mathrm{L}}{\left(\mathrm{d}_{4}-\mathrm{d}_{2}\right) \cdot \mathrm{t}_{\mathrm{c}}}$
Open Calculator
ex $58.19909 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{(80 \mathrm{~mm}-40 \mathrm{~mm}) \cdot 21.478 \mathrm{~mm}}$
3) Compressive Stress in Spigot of Cotter Joint Considering Crushing Failure
$f \mathrm{x} \sigma_{\mathrm{c} 1}=\frac{\mathrm{L}}{\mathrm{t}_{\mathrm{c}} \cdot \mathrm{d}_{2}}$
ex $58.19909 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{21.478 \mathrm{~mm} \cdot 40 \mathrm{~mm}}$
4) Compressive Stress of Spigot
$f_{\mathrm{x}} \sigma_{\mathrm{cp}}=\frac{\mathrm{L}}{\mathrm{t}_{\mathrm{c}} \cdot \mathrm{D}_{\mathrm{s}}}$

$$
\text { ex } 46.55927 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{21.478 \mathrm{~mm} \cdot 50.0 \mathrm{~mm}}
$$

5) Permissible Shear Stress for Cotter
$f \mathrm{f} \tau_{\mathrm{p}}=\frac{\mathrm{P}}{2 \cdot \mathrm{~b} \cdot \mathrm{t}_{\mathrm{c}}}$

$$
\text { ex } 719988.7 \mathrm{~N} / \mathrm{m}^{2}=\frac{1500 \mathrm{~N}}{2 \cdot 48.5 \mathrm{~mm} \cdot 21.478 \mathrm{~mm}}
$$

6) Permissible Shear Stress for Spigot
$\mathrm{fx} \tau_{\mathrm{p}}=\frac{\mathrm{P}}{2 \cdot \mathrm{a} \cdot \mathrm{d}_{\mathrm{ex}}}$
Open Calculator ©
ex $957854.4 \mathrm{~N} / \mathrm{m}^{2}=\frac{1500 \mathrm{~N}}{2 \cdot 17.4 \mathrm{~mm} \cdot 45 \mathrm{~mm}}$
7) Shear Stress in Cotter given Cotter Thickness and Width
$\mathrm{fx} \tau_{\mathrm{co}}=\frac{\mathrm{L}}{2 \cdot \mathrm{t}_{\mathrm{c}} \cdot \mathrm{b}}$
ex $23.99962 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{2 \cdot 21.478 \mathrm{~mm} \cdot 48.5 \mathrm{~mm}}$
8) Shear Stress in Socket of Cotter Joint given Inner and Outer Diameter of Socket $\boxed{\square}$
$\mathrm{fx} \tau_{\mathrm{so}}=\frac{\mathrm{L}}{2 \cdot\left(\mathrm{~d}_{4}-\mathrm{d}_{2}\right) \cdot \mathrm{c}}$
ex $25 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{2 \cdot(80 \mathrm{~mm}-40 \mathrm{~mm}) \cdot 25.0 \mathrm{~mm}}$
9) Shear Stress in Spigot of Cotter Joint given Diameter of Spigot and Load

Open Calculator
ex $26.59574 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{2 \cdot 23.5 \mathrm{~mm} \cdot 40 \mathrm{~mm}}$
10) Tensile Stress in Rod of Cotter Joint
$f \mathrm{fx} \sigma \mathrm{t}_{\text {rod }}=\frac{4 \cdot \mathrm{~L}}{\pi \cdot \mathrm{~d}^{2}}$
Open Calculator
ex $49.99939 \mathrm{~N} / \mathrm{mm}^{2}=\frac{4 \cdot 50000 \mathrm{~N}}{\pi \cdot(35.6827 \mathrm{~mm})^{2}}$
11) Tensile Stress in Socket of Cotter Joint given Outer and Inner Diameter of Socket
$f \mathbf{f x}\left(\sigma_{\mathrm{t}} \mathrm{so}\right)=\frac{\mathrm{L}}{\frac{\pi}{4} \cdot\left(\mathrm{~d}_{1}^{2}-\mathrm{d}_{2}^{2}\right)-\mathrm{t}_{\mathrm{c}} \cdot\left(\mathrm{d}_{1}-\mathrm{d}_{2}\right)}$
Open Calculator
ex
$68.22288 \mathrm{~N} / \mathrm{mm}^{2}=\frac{50000 \mathrm{~N}}{\frac{\pi}{4} \cdot\left((54 \mathrm{~mm})^{2}-(40 \mathrm{~mm})^{2}\right)-21.478 \mathrm{~mm} \cdot(54 \mathrm{~mm}-40 \mathrm{~mm})}$
12) Tensile Stress in Spigot
$f \mathrm{x} \sigma_{\mathrm{t}}=\frac{\mathrm{P}}{\left(\frac{\pi}{4} \cdot \mathrm{~d}_{\mathrm{ex}}^{2}\right)-\left(\mathrm{d}_{\mathrm{ex}} \cdot \mathrm{t}_{\mathrm{c}}\right)}$
ex $2.404149 \mathrm{~N} / \mathrm{mm}^{2}=\frac{1500 \mathrm{~N}}{\left(\frac{\pi}{4} \cdot(45 \mathrm{~mm})^{2}\right)-(45 \mathrm{~mm} \cdot 21.478 \mathrm{~mm})}$
13) Tensile Stress in Spigot of Cotter Joint given Diameter of Spigot, Thickenss of Cotter and Load

$$
f \mathbf{x}\left(\sigma_{\mathrm{t}} \mathrm{sp}\right)=\frac{\mathrm{L}}{\frac{\pi \cdot \mathrm{~d}_{2}^{2}}{4}-\mathrm{d}_{2} \cdot \mathrm{t}_{\mathrm{c}}}
$$

50000N
ex $125.7808 \mathrm{~N} / \mathrm{mm}^{2}=$

$$
\overline{\frac{\pi \cdot(40 \mathrm{~mm})^{2}}{4}-40 \mathrm{~mm} \cdot 21.478 \mathrm{~mm}}
$$

Variables Used

- a Spigot Distance (Millimeter)
- b Mean Width of Cotter (Millimeter)
- c Axial Distance From Slot to End of Socket Collar (Millimeter)
- d Diameter of Rod of Cotter Joint (Millimeter)
- \mathbf{d}_{1} Outside Diameter of Socket (Millimeter)
- \mathbf{d}_{2} Diameter of Spigot (Millimeter)
- \mathbf{d}_{4} Diameter of Socket Collar (Millimeter)
- $\mathbf{d}_{\mathbf{e x}}$ External Diameter of Spigot (Millimeter)
- $\mathbf{D}_{\mathbf{s}}$ Spigot Diameter (Millimeter)
- L Load on Cotter Joint (Newton)
- $\mathbf{L}_{\mathbf{a}}$ Gap between End of Slot to End of Spigot (Millimeter)
- P Tensile Force on Rods (Newton)
- $\mathbf{t}_{\mathbf{c}}$ Thickness of Cotter (Millimeter)
- σ_{b} Bending Stress in Cotter (Newton per Square Millimeter)
- $\sigma_{\mathbf{c} 1}$ Compressive Stress in Spigot (Newton per Square Millimeter)
- $\sigma_{\mathbf{c p}}$ Stress in Spigot (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{c s o}}$ Compressive Stress In Socket (Newton per Square Millimeter)
- $\sigma_{\mathbf{t}}$ Tensile Stress (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{t}} \mathbf{S O}$ Tensile Stress In Socket (Newton per Square Millimeter)
- $\sigma_{\mathbf{t}} \mathbf{s p}$ Tensile Stress In Spigot (Newton per Square Millimeter)
- $\boldsymbol{\sigma} \mathbf{t}_{\text {rod }}$ Tensile Stress in Cotter Joint Rod (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{c o}}$ Shear Stress in Cotter (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{s o}}$ Shear Stress in Socket (Newton per Square Millimeter)
- $\mathbf{T}_{\mathbf{s p}}$ Shear Stress in Spigot (Newton per Square Millimeter)
- $\tau_{\mathbf{p}}$ Permissible Shear Stress (Newton per Square Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Measurement: Length in Millimeter (mm)

Length Unit Conversion ひ

- Measurement: Pressure in Newton per Square Meter ($\mathrm{N} / \mathrm{m}^{2}$)

Pressure Unit Conversion U

- Measurement: Force in Newton (N)

Force Unit Conversion

- Measurement: Stress in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Stress Unit Conversion

Check other formula lists

- Forces and Loads on Joint Formulas
- Joint Geometry and Dimensions Formulas
- Strength and Stress Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

