

Wave Energy Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

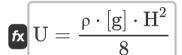
List of 23 Wave Energy Formulas

Wave Energy

1) Deepwater Celerity given Wave Power of Deepwater

Open Calculator

$$extbf{K} egin{bmatrix} ext{C}_{
m o} = rac{ ext{P}_{
m d}}{0.5 \cdot ext{E}} \end{bmatrix}$$


2) Potential Energy given Total Wave Energy

 $f_{\mathbf{x}} PE = TE - KE$

Open Calculator

 $= 10.124 \mathrm{J/m} = 20.26 \mathrm{J/m} - 10.136 \mathrm{J}$

3) Specific Energy or Energy Density given Wave Height 🗗

Open Calculator G

$$ext{ex} 13.51479 ext{J/m}^3 = rac{1.225 ext{kg/m}^3 \cdot ext{[g]} \cdot ext{(3m)}^2}{8}$$

4) Specific Energy or Energy Density given Wavelength and Wave Energy

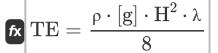
 $\int U = \frac{TE}{r^2}$

Open Calculator

- $\begin{array}{c} \text{ex} \ 13.50667 \text{J/m}^{_3} = \frac{20.26 \text{J/m}}{1.5 \text{m}} \end{array}$
- 5) Total Wave Energy for Wave Power of Deepwater
- $\mathbf{E} = rac{\mathrm{P_d}}{0.5 \cdot \mathrm{C_o}}$

Open Calculator 🖒

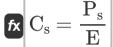
- $\boxed{\textbf{ex}} 80 \text{J} = \frac{180 \text{W}}{0.5 \cdot 4.5 \text{m/s}}$
- 6) Total Wave Energy given Kinetic Energy and Potential Energy
- extstyle ext


Open Calculator

- $m ex \ 20.266J/m = 10.136J + 10.13J/m$
- 7) Total Wave Energy given Wave Power for Shallow Water
- $\mathbf{E} = rac{\mathrm{P_s}}{\mathrm{C_s}}$

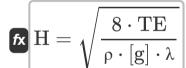
Open Calculator 🗗

 $\boxed{\textbf{ex}}80 J = \frac{224 W}{2.8 m/s}$


8) Total Wave Energy in one Wavelength per unit Crest Width

Open Calculator

 $\mathbf{ex} = \frac{20.27218 \mathrm{J/m}}{8} = \frac{1.225 \mathrm{kg/m^3 \cdot [g] \cdot (3m)^2 \cdot 1.5m}}{8}$


9) Wave Celerity given Wave Power for Shallow Water

Open Calculator

 $\boxed{2.8 \text{m/s} = \frac{224 \text{W}}{80 \text{J}}}$

10) Wave Height given Total Wave Energy in one Wavelength per unit Crest Width

Open Calculator

 $\mathbf{ex} = 2.999098 \mathrm{m} = \sqrt{rac{8 \cdot 20.26 \mathrm{J/m}}{1.225 \mathrm{kg/m^3 \cdot [g] \cdot 1.5 m}}}$

11) Wave Power for Deepwater

fx
$$P_{
m d} = 0.5 \cdot E \cdot C_{
m o}$$

Open Calculator

 $\texttt{ex} \ 180 \text{W} = 0.5 \cdot 80 \text{J} \cdot 4.5 \text{m/s}$

© <u>calculatoratoz.com</u>. A <u>softusvista inc.</u> venture!

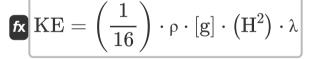
12) Wave Power for Shallow Water

fx $P_s = E \cdot C_s$

Open Calculator 🚰

 $\texttt{ex} \ 224 \text{W} = 80 \text{J} \cdot 2.8 \text{m/s}$

13) Wavelength for Total Wave Energy in Wavelength per unit Crest Width


$$\lambda = rac{8 \cdot \mathrm{TE}}{
ho \cdot [\mathrm{g}] \cdot \mathrm{H}^2}$$

Open Calculator

ex $1.499098m = \frac{8 \cdot 20.26 J/m}{1.225 kg/m^3 \cdot [g] \cdot (3m)^2}$

Kinetic Energy

14) Kinetic Energy due to Particle Motion 🗹

Open Calculator 🗗

 $\boxed{10.13609 \mathrm{J} = \left(\frac{1}{16}\right) \cdot 1.225 \mathrm{kg/m^3} \cdot [\mathrm{g}] \cdot \left((3\mathrm{m})^2\right) \cdot 1.5\mathrm{m}}$

15) Kinetic Energy given Total Wave Energy

$$fx KE = TE - PE$$

Open Calculator

ex $10.13 \mathrm{J} = 20.26 \mathrm{J/m} - 10.13 \mathrm{J/m}$

16) Wave Height given Kinetic Energy due to Particle Motion

 $\mathbf{K} = \sqrt{rac{ ext{KE}}{0.0625 \cdot
ho \cdot [ext{g}] \cdot \lambda}}$

Open Calculator

 $= \sqrt{\frac{10.136 J}{0.0625 \cdot 1.225 kg/m^3 \cdot [g] \cdot 1.5m}}$

17) Wavelength for Kinetic Energy due to Particle Motion



Open Calculator

 $= \frac{10.136 \text{J}}{0.0625 \cdot 1.225 \text{kg/m}^3 \cdot [\text{g}] \cdot (3\text{m})^2}$

Potential Energy 2

18) Length given Potential Energy due to Deformation of Free Surface

Open Calculator

 $ext{ex} 1.499977 ext{m} = rac{2 \cdot 324.35 ext{J}}{1.225 ext{kg/m}^3 \cdot [ext{g}] \cdot (6 ext{m})^2}$

19) Potential Energy due to Deformation of Free Surface

 $\mathbf{E}_{\mathrm{p}} = rac{
ho \cdot [\mathrm{g}] \cdot \eta^2 \cdot \lambda}{2}$

Open Calculator 🚰

 $ext{ex} \ 324.3549 ext{J} = rac{1.225 ext{kg/m}^3 \cdot [ext{g}] \cdot (6 ext{m})^2 \cdot 1.5 ext{m}}{2}$

20) Potential Energy per unit Width in One Wave

 $ag{PE} = \left(rac{1}{16}
ight) \cdot
ho \cdot [\mathrm{g}] \cdot \left(\mathrm{H}^2
ight) \cdot \lambda$

Open Calculator

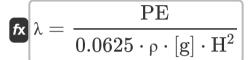
 $\boxed{ 10.13609 \mathrm{J/m} = \left(\frac{1}{16}\right) \cdot 1.225 \mathrm{kg/m^3} \cdot [\mathrm{g}] \cdot \left(\left(3\mathrm{m}\right)^2\right) \cdot 1.5\mathrm{m} }$

21) Surface Elevation given Potential Energy due to Deformation of Free Surface

$$\pi = \sqrt{\frac{2 \cdot E_p}{\rho \cdot [g] \cdot \lambda}}$$

Open Calculator

ex
$$5.999954 \mathrm{m} = \sqrt{rac{2 \cdot 324.35 \mathrm{J}}{1.225 \mathrm{kg/m^3 \cdot [g] \cdot 1.5 m}}}$$


22) Wave Height given Potential Energy per Unit Width in One Wave 🛂

Open Calculator 2

$$ext{H} = \sqrt{rac{ ext{PE}}{0.0625 \cdot
ho \cdot [ext{g}] \cdot \lambda}}$$

23) Wavelength for Potential Energy per unit Width in One Wave

Open Calculator 2

$$= \frac{10.13 \text{J/m}}{0.0625 \cdot 1.225 \text{kg/m}^3 \cdot [\text{g}] \cdot (3\text{m})^2}$$

Variables Used

- Co Deepwater Wave Celerity (Meter per Second)
- C_s Celerity for Shallow Depth (Meter per Second)
- E Total Wave Energy (Joule)
- E_p Potential Energy of Wave (Joule)
- H Wave Height (Meter)
- **KE** Kinetic Energy of Wave per Unit Width (Joule)
- Pd Wave Power for Deep Water (Watt)
- P_S Wave Power for Shallow Depth (Watt)
- **PE** Potential Energy per Unit Width (Joule per Meter)
- TE Total Energy of Wave per Width (Joule per Meter)
- **U** Energy Density of Wave (Joule per Cubic Meter)
- η Surface Elevation (Meter)
- **λ** Wavelength (Meter)
- ρ Density of Fluid (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: [g], 9.80665

 Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Energy in Joule (J)
 Energy Unit Conversion
- Measurement: Power in Watt (W)
 Power Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion
- Measurement: Energy Density in Joule per Cubic Meter (J/m³)
 Energy Density Unit Conversion
- Measurement: Energy per Unit Length in Joule per Meter (J/m)

 Energy per Unit Length Unit Conversion

Check other formula lists

- Cnoidal Wave Theory Formulas
- Horizontal and Vertical Semi-Axis of Ellipse Formulas
- Wave Energy Formulas
- Wave Parameters Formulas

- Wave Period Formulas
- Wave Period Distribution and Wave Spectrum Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/15/2024 | 5:43:33 AM UTC

Please leave your feedback here...

