

Shoaling, Refraction and Breaking Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Shoaling, Refraction and Breaking Formulas

Shoaling, Refraction and Breaking ©

1) Beach Slope given Breaking Wave and Wave Height at Breaking Point \longleftarrow
$\mathrm{fx} \beta=\xi \cdot \sqrt{\frac{\mathrm{H}_{\mathrm{w}}}{\lambda_{\mathrm{o}}}}$
ex $0.149916 \mathrm{rad}=0.229 \cdot \sqrt{\frac{3 \mathrm{~m}}{7 \mathrm{~m}}}$
2) Breaking Wave given wave height at Breaking Point
$f \mathbf{x} \xi=\frac{\beta}{\sqrt{\frac{\mathrm{H}_{\mathrm{w}}}{\lambda_{\mathrm{o}}}}}$
ex $0.229129=\frac{0.15 \mathrm{rad}}{\sqrt{\frac{3 \mathrm{~m}}{7 \mathrm{~m}}}}$
3) Deepwater Wave Height for Shoaling Coefficient and Refraction Coefficient W
fx $\mathrm{H}_{\mathrm{o}}=\frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{s}} \cdot \mathrm{K}_{\mathrm{r}}}$
ex $31.74603 \mathrm{~m}=\frac{3 \mathrm{~m}}{0.945 \cdot 0.1}$
4) Deepwater Wavelength for Shoaling Coefficient in Shallow Water
$f \mathrm{x} \lambda_{\mathrm{o}}=\left(\frac{\mathrm{K}_{\mathrm{s}}}{0.4466}\right)^{4} \cdot \mathrm{~d}_{\mathrm{w}}$
$\mathrm{ex} 8.018855 \mathrm{~m}=\left(\frac{0.945}{0.4466}\right)^{4} \cdot 0.4 \mathrm{~m}$
5) Deepwater Wavelength given Wave Breaking and Wave Height at Breaking Point
$\mathrm{fx} \lambda_{\mathrm{o}}=\frac{\xi^{2} \cdot \mathrm{H}_{\mathrm{w}}}{\beta^{2}}$
ex $6.992133 \mathrm{~m}=\frac{(0.229)^{2} \cdot 3 \mathrm{~m}}{(0.15 \mathrm{rad})^{2}}$
6) Distance between Two Rays at General Point $\boxed{\boxed{J}}$
$\mathrm{fx} \mathrm{b}=\frac{\mathrm{b}_{0}}{\mathrm{~K}_{\mathrm{r}}^{2}}$
ex $10000 \mathrm{~m}=\frac{100 \mathrm{~m}}{(0.1)^{2}}$
7) Refraction Coefficient
$\mathrm{fx} \mathrm{K}_{\mathrm{r}}=\sqrt{\frac{\mathrm{b}_{0}}{\mathrm{~b}}}$
ex $0.1=\sqrt{\frac{100 \mathrm{~m}}{10000 \mathrm{~m}}}$
8) Refraction Coefficient given Relative Change of Wave Height
$f \mathrm{fx} \mathrm{K}_{\mathrm{r}}=\frac{\mathrm{H}_{\mathrm{w}}}{\mathrm{H}_{\mathrm{o}} \cdot \mathrm{K}_{\mathrm{s}}}$
ex $0.100558=\frac{3 \mathrm{~m}}{31.57 \mathrm{~m} \cdot 0.945}$

9) Shoaling Coefficient

$$
\mathrm{K}_{\mathrm{s}}=\left(\tanh (\mathrm{k} \cdot \mathrm{~d}) \cdot\left(1+\left(2 \cdot \mathrm{k} \cdot \frac{\mathrm{~d}}{\sinh (2 \cdot \mathrm{k} \cdot \mathrm{~d})}\right)\right)\right)^{-0.5}
$$

ex
$0.951161=\left(\tanh (0.2 \cdot 10 \mathrm{~m}) \cdot\left(1+\left(2 \cdot 0.2 \cdot \frac{10 \mathrm{~m}}{\sinh (2 \cdot 0.2 \cdot 10 \mathrm{~m})}\right)\right)^{-0.5}\right.$
10) Shoaling Coefficient given Wave Celerity
$\mathrm{fx} \mathrm{K}_{\mathrm{s}}=\sqrt{\frac{\mathrm{C}_{\mathrm{o}}}{\mathrm{C} \cdot 2 \cdot \mathrm{n}}}$
Open Calculator ©
$\mathrm{ex} 0.67082=\sqrt{\frac{4.5 \mathrm{~m} / \mathrm{s}}{20 \mathrm{~m} / \mathrm{s} \cdot 2 \cdot 0.25}}$
11) Shoaling Coefficient in Shallow Water
$f \mathrm{x} K_{\mathrm{S}}=0.4466 \cdot\left(\frac{\lambda_{\mathrm{o}}}{\mathrm{d}_{\mathrm{w}}}\right)^{\frac{1}{4}}$
ex $0.913436=0.4466 \cdot\left(\frac{7 \mathrm{~m}}{0.4 \mathrm{~m}}\right)^{\frac{1}{4}}$
12) Water Depth given Shoaling Coefficient in Shallow Water
$f \mathrm{x} \mathrm{d}_{\mathrm{w}}=\frac{\lambda_{\mathrm{o}}}{\left(\frac{\mathrm{K}_{\mathrm{s}}}{0.4466}\right)^{4}}$

$$
\text { ex } 0.349177 \mathrm{~m}=\frac{7 \mathrm{~m}}{\left(\frac{0.945}{0.4466}\right)^{4}}
$$

13) Water Depth when Reduced Shoaling Coefficient in Shallow Water
$f \mathbf{x} \mathrm{~d}_{\mathrm{w}}=\frac{\lambda_{\mathrm{o}}}{\left(\frac{\mathrm{K}_{\mathrm{s}}}{0.2821}\right)^{2}}$
ex $0.623793 \mathrm{~m}=\frac{7 \mathrm{~m}}{\left(\frac{0.945}{0.2821}\right)^{2}}$
14) Wave Height at Breaking Point given Breaking Wave
$f \mathrm{f} \mathrm{H}_{\mathrm{w}}=\frac{\lambda_{\mathrm{o}} \cdot \beta^{2}}{\xi^{2}}$
Open Calculator
ex $3.003375 \mathrm{~m}=\frac{7 \mathrm{~m} \cdot(0.15 \mathrm{rad})^{2}}{(0.229)^{2}}$
15) Wave Height given Shoaling Coefficient and Refraction Coefficient
$f \mathrm{f} \mathrm{H}_{\mathrm{w}}=\mathrm{H}_{\mathrm{o}} \cdot \mathrm{K}_{\mathrm{S}} \cdot \mathrm{K}_{\mathrm{r}}$
ex $2.983365 \mathrm{~m}=31.57 \mathrm{~m} \cdot 0.945 \cdot 0.1$
16) Wave Length for Reduced Shoaling Coefficient in Shallow Water
$f \mathbf{x} \lambda_{\mathrm{o}}=\mathrm{d}_{\mathrm{w}} \cdot\left(\frac{\mathrm{K}_{\mathrm{S}}}{0.2821}\right)^{2}$
ex $4.488667 \mathrm{~m}=0.4 \mathrm{~m} \cdot\left(\frac{0.945}{0.2821}\right)^{2}$

Variables Used

- b Distance Between Two Rays (Meter)
- \mathbf{b}_{0} Distance Between Two Rays at Deepwater (Meter)
- C Celerity of the Wave (Meter per Second)
- $\mathbf{C}_{\mathbf{o}}$ Deepwater Wave Celerity (Meter per Second)
- d Coastal Mean Depth (Meter)
- $\mathbf{d}_{\mathbf{w}}$ Water Depth in Ocean (Meter)
- $\mathbf{H}_{\mathbf{o}}$ Wave Height in Deepwater (Meter)
- $\mathrm{H}_{\mathbf{w}}$ Wave Height for Surface Gravity Waves (Meter)
- k Wave Number for Water Wave
- K_{r} Refraction Coefficient
- $\mathbf{K}_{\mathbf{s}}$ Shoaling Coefficient
- \mathbf{n} Ratio of Group Velocity to Phase Velocity
- $\boldsymbol{\beta}$ Beach Slope (Radian)
- $\boldsymbol{\lambda}_{\mathbf{0}}$ Deep-Water Wavelength (Meter)
- ξ Breaking Wave

Constants, Functions, Measurements used

- Function: sinh, sinh(Number)

The hyperbolic sine function, also known as the sinh function, is a mathematical function that is defined as the hyperbolic analogue of the sine function.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Function: tanh, tanh(Number)

The hyperbolic tangent function (tanh) is a function that is defined as the ratio of the hyperbolic sine function (sinh) to the hyperbolic cosine function (cosh).

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Angle in Radian (rad)

Angle Unit Conversion

Check other formula lists

- Group Velocity, Beats, Energy Transport Formulas
- Linear Dispersion Relation of Linear Wave Formulas
- Non-Linear Wave Theory Formulas
- Shoaling, Refraction and Breaking Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

