
calculatoratoz.com

unitsconverters.com

Hydrostatics Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 28 Hydrostatics Formulas

Hydrostatics ©

1) Coordinate measured Downward from Top given Effective Tension
fx $\mathrm{z}=-\left(\frac{\mathrm{T}_{\mathrm{e}}}{\left(\rho_{\mathrm{s}}-\rho_{\mathrm{m}}\right) \cdot[\mathrm{g}] \cdot \mathrm{A}_{\mathrm{s}}}-\mathrm{L}\right)$
Open Calculator
ex $5.999994=-\left(\frac{402.22 \mathrm{kN}}{\left(7750 \mathrm{~kg} / \mathrm{m}^{3}-1440 \mathrm{~kg} / \mathrm{m}^{3}\right) \cdot[\mathrm{g}] \cdot 0.65 \mathrm{~m}^{2}}-16 \mathrm{~m}\right)$
2) Coordinate measured Downward from Top given Tension on Vertical Drill String $\boxed{ }$
$f \mathrm{fx} \mathrm{z}=-\left(\left(\frac{\mathrm{T}}{\rho_{\mathrm{s}} \cdot[g] \cdot \mathrm{A}_{\mathrm{s}}}\right)-\mathrm{L}\right)$
Open Calculator
ex $6=-\left(\left(\frac{494.01 \mathrm{kN}}{7750 \mathrm{~kg} / \mathrm{m}^{3} \cdot[\mathrm{~g}] \cdot 0.65 \mathrm{~m}^{2}}\right)-16 \mathrm{~m}\right)$
3) Cross Section Area of Steel given Effective Tension
$f \mathrm{f} \mathrm{A}_{\mathrm{s}}=\frac{\mathrm{T}_{\mathrm{e}}}{\left(\rho_{\mathrm{s}}-\rho_{\mathrm{m}}\right) \cdot[\mathrm{g}] \cdot(L-z)}$
Open Calculator
ex $0.65 \mathrm{~m}^{2}=\frac{402.22 \mathrm{kN}}{\left(7750 \mathrm{~kg} / \mathrm{m}^{3}-1440 \mathrm{~kg} / \mathrm{m}^{3}\right) \cdot[\mathrm{g}] \cdot(16 \mathrm{~m}-6)}$
4) Cross Section Area of Steel in Pipe given Tension on Vertical Drill String $\boxed{\square}$
$f x A_{s}=\frac{T}{\rho_{s} \cdot[g] \cdot(L-z)}$

$$
\text { ex } 0.65 \mathrm{~m}^{2}=\frac{494.01 \mathrm{kN}}{7750 \mathrm{~kg} / \mathrm{m}^{3} \cdot[\mathrm{~g}] \cdot(16 \mathrm{~m}-6)}
$$

5) Effective Tension given Buoyant Force acts in Direction opposite to Gravity Force
$f_{\mathrm{x}} \mathrm{T}_{\mathrm{e}}=\left(\rho_{\mathrm{s}}-\rho_{\mathrm{m}}\right) \cdot[\mathrm{g}] \cdot \mathrm{A}_{\mathrm{s}} \cdot(\mathrm{L}-\mathrm{z})$
Open Calculator
ex $402.2197 \mathrm{kN}=\left(7750 \mathrm{~kg} / \mathrm{m}^{3}-1440 \mathrm{~kg} / \mathrm{m}^{3}\right) \cdot[\mathrm{g}] \cdot 0.65 \mathrm{~m}^{2} \cdot(16 \mathrm{~m}-6)$
6) Length of Pipe Hanging given Lower Section of Drill String Length in Compression
$\mathbf{f x} L=\frac{L_{\mathrm{c}} \cdot \rho_{\mathrm{s}}}{\rho_{\mathrm{m}}}$
Open Calculator
ex $15.98438 \mathrm{~m}=\frac{2.97 \cdot 7750 \mathrm{~kg} / \mathrm{m}^{3}}{1440 \mathrm{~kg} / \mathrm{m}^{3}}$
7) Length of Pipe Hanging in Well given Effective Tension
$f \mathrm{fx}=\left(\left(\frac{\mathrm{T}_{\mathrm{e}}}{\left(\rho_{\mathrm{s}}-\rho_{\mathrm{m}}\right) \cdot[\mathrm{g}] \cdot \mathrm{A}_{\mathrm{s}}}+\mathrm{z}\right)\right)$
Open Calculator
ex $16.00001 \mathrm{~m}=\left(\left(\frac{402.22 \mathrm{kN}}{\left(7750 \mathrm{~kg} / \mathrm{m}^{3}-1440 \mathrm{~kg} / \mathrm{m}^{3}\right) \cdot[\mathrm{g}] \cdot 0.65 \mathrm{~m}^{2}}+6\right)\right)$
8) Length of Pipe Hanging in Well given Tension on Vertical Drill String
$f \mathrm{fx} L=\left(\frac{T}{\rho_{\mathrm{s}} \cdot[\mathrm{g}] \cdot \mathrm{A}_{\mathrm{s}}}\right)+\mathrm{z}$
Open Calculator
ex $16 \mathrm{~m}=\left(\frac{494.01 \mathrm{kN}}{7750 \mathrm{~kg} / \mathrm{m}^{3} \cdot[\mathrm{~g}] \cdot 0.65 \mathrm{~m}^{2}}\right)+6$
9) Length of Pipe Hanging in Well given Vertical Force at Bottom End of Drill String \longleftarrow
$\mathrm{fx}_{\mathrm{x}} L=\frac{\mathrm{f}_{\mathrm{z}}}{\rho_{\mathrm{m}} \cdot[\mathrm{g}] \cdot \mathrm{A}_{\mathrm{s}}}$
Open Calculator
ex $15.99952 \mathrm{~m}=\frac{146.86 \mathrm{kN}}{1440 \mathrm{~kg} / \mathrm{m}^{3} \cdot[\mathrm{~g}] \cdot 0.65 \mathrm{~m}^{2}}$
10) Lower Section of Drill String Length that is in Compression

$$
\mathrm{fx}_{\mathrm{x}} \mathrm{~L}_{\mathrm{c}}=\frac{\rho_{\mathrm{m}} \cdot L}{\rho_{\mathrm{s}}}
$$

ex $2.972903=\frac{1440 \mathrm{~kg} / \mathrm{m}^{3} \cdot 16 \mathrm{~m}}{7750 \mathrm{~kg} / \mathrm{m}^{3}}$
11) Mass Density of Drilling Mud for Lower Section of Drill String Length in Compression
$\mathrm{fx}_{\mathrm{x}} \rho_{\mathrm{m}}=\frac{\mathrm{L}_{\mathrm{c}} \cdot \rho_{\mathrm{s}}}{\mathrm{L}}$
Open Calculator
ex $1438.594 \mathrm{~kg} / \mathrm{m}^{3}=\frac{2.97 \cdot 7750 \mathrm{~kg} / \mathrm{m}^{3}}{16 \mathrm{~m}}$
12) Mass Density of Drilling Mud given Vertical Force at Bottom End of Drill String

[^0]13) Mass Density of Drilling Mud when Buoyant Force acts in Direction opposite to Gravity Force
$f x \rho_{\mathrm{m}}=-\left(\left(\frac{\mathrm{T}_{\mathrm{e}}}{[\mathrm{g}] \cdot \mathrm{A}_{\mathrm{s}} \cdot(\mathrm{L}-\mathrm{z})}-\rho_{\mathrm{s}}\right)\right)$
$$
\mathrm{ex} 1439.996 \mathrm{~kg} / \mathrm{m}^{3}=-\left(\left(\frac{402.22 \mathrm{kN}}{[\mathrm{~g}] \cdot 0.65 \mathrm{~m}^{2} \cdot(16 \mathrm{~m}-6)}-7750 \mathrm{~kg} / \mathrm{m}^{3}\right)\right)
$$
14) Mass Density of Steel for Lower Section of Drill String Length in Compression
$f \mathrm{f} \rho_{\mathrm{s}}=\frac{\rho_{\mathrm{m}} \cdot L}{L_{\mathrm{c}}}$
ex $7757.576 \mathrm{~kg} / \mathrm{m}^{3}=\frac{1440 \mathrm{~kg} / \mathrm{m}^{3} \cdot 16 \mathrm{~m}}{2.97}$
15) Mass Density of Steel for Tension on Vertical Drill String
$f \mathbf{f} \rho_{\mathrm{s}}=\frac{\mathrm{T}}{[\mathrm{g}] \cdot \mathrm{A}_{\mathrm{s}} \cdot(\mathrm{L}-\mathrm{z})}$
ex $7750 \mathrm{~kg} / \mathrm{m}^{3}=\frac{494.01 \mathrm{kN}}{[\mathrm{g}] \cdot 0.65 \mathrm{~m}^{2} \cdot(16 \mathrm{~m}-6)}$
16) Mass Density of Steel when Buoyant Force acts in Direction opposite to Gravity Force
$f \mathrm{x} \rho_{\mathrm{s}}=\left(\frac{\mathrm{T}_{\mathrm{e}}}{[\mathrm{g}] \cdot \mathrm{A}_{\mathrm{S}} \cdot(\mathrm{L}-\mathrm{z})}+\rho_{\mathrm{m}}\right)$
$7750.004 \mathrm{~kg} / \mathrm{m}^{3}=\left(\frac{402.22 \mathrm{kN}}{[\mathrm{g}] \cdot 0.65 \mathrm{~m}^{2} \cdot(16 \mathrm{~m}-6)}+1440 \mathrm{~kg} / \mathrm{m}^{3}\right)$
17) Tension on Vertical Drill String
$f \mathrm{fx} T=\rho_{\mathrm{S}} \cdot[\mathrm{g}] \cdot \mathrm{A}_{\mathrm{s}} \cdot(\mathrm{L}-\mathrm{z})$
Open Calculator
ex $494.01 \mathrm{kN}=7750 \mathrm{~kg} / \mathrm{m}^{3} \cdot[\mathrm{~g}] \cdot 0.65 \mathrm{~m}^{2} \cdot(16 \mathrm{~m}-6)$
18) Vertical Force at Bottom End of Drill String
$f \mathrm{f} \mathrm{f}_{\mathrm{z}}=\rho_{\mathrm{m}} \cdot[\mathrm{g}] \cdot \mathrm{A}_{\mathrm{s}} \cdot \mathrm{L}$
Open Calculator
ex $146.8644 \mathrm{kN}=1440 \mathrm{~kg} / \mathrm{m}^{3} \cdot[\mathrm{~g}] \cdot 0.65 \mathrm{~m}^{2} \cdot 16 \mathrm{~m}$

Static Loads

Archimedes Law and Buoyancy

19) Buoyant Force of Body Submerged in Fluid
$f \mathbf{f} \mathrm{~F}_{\mathrm{B}}=\nabla \cdot \rho \cdot[\mathrm{g}]$
ex $4888.615 \mathrm{~N}=0.5 \mathrm{~m}^{3} \cdot 997 \mathrm{~kg} / \mathrm{m}^{3} \cdot[\mathrm{~g}]$
20) Mass Density of Fluid for Buoyant Force Submerged in Fluid
$f \mathrm{fx} \rho=\frac{\mathrm{F}_{\mathrm{B}}}{[\mathrm{g}] \cdot \nabla}$
Open Calculator
ex $997 \mathrm{~kg} / \mathrm{m}^{3}=\frac{4888.615 \mathrm{~N}}{[\mathrm{~g}] \cdot 0.5 \mathrm{~m}^{3}}$
21) Volume of Submerged Part of Object given Buoyant Force of Body Submerged in Fluid
$\mathrm{fx} \nabla=\frac{\mathrm{F}_{\mathrm{B}}}{\rho \cdot[\mathrm{g}]}$
Open Calculator
ex $0.5 \mathrm{~m}^{3}=\frac{4888.615 \mathrm{~N}}{997 \mathrm{~kg} / \mathrm{m}^{3} \cdot[\mathrm{~g}]}$

Drill String Buckling

22) Column Slenderness Ratio for Critical Buckling Load
$f \mathbf{x} \operatorname{Lcr}_{\text {ratio }}=\sqrt{\frac{\mathrm{A} \cdot \pi^{2} \cdot \mathrm{E}}{\mathrm{P}_{\mathrm{cr}}}}$
ex $160=\sqrt{\frac{0.0688 \mathrm{~m}^{2} \cdot \pi^{2} \cdot 2 \mathrm{E} 11 \mathrm{~N} / \mathrm{m}^{2}}{5304.912 \mathrm{kN}}}$

23) Critical Buckling Load

$\mathrm{fx} \mathrm{P}_{\text {cr }}=\mathrm{A} \cdot\left(\frac{\pi^{2} \cdot \mathrm{E}}{\mathrm{Lcr}_{\text {ratio }}^{2}}\right)$
ex $5304.912 \mathrm{kN}=0.0688 \mathrm{~m}^{2} \cdot\left(\frac{\pi^{2} \cdot 2 \mathrm{E} 11 \mathrm{~N} / \mathrm{m}^{2}}{(160)^{2}}\right)$
24) Cross Section Area of Column for Critical Buckling Load
$\mathrm{fx} \mathrm{A}=\frac{\mathrm{P}_{\text {cr }} \cdot \mathrm{Lcr}_{\text {ratio }}^{2}}{\pi^{2} \cdot \mathrm{E}}$
$\mathrm{ex} 0.0688 \mathrm{~m}^{2}=\frac{5304.912 \mathrm{kN} \cdot(160)^{2}}{\pi^{2} \cdot 2 \mathrm{E} 11 \mathrm{~N} / \mathrm{m}^{2}}$
25) Flow Velocity given Reynolds Number in Shorter Length of Pipe
$f_{\mathrm{x}} \mathrm{V}_{\mathrm{f}}=\frac{\mathrm{Re} \cdot \mathrm{v}}{\mathrm{D}_{\mathrm{p}}}$
Open Calculatores
ex $1.119802 \mathrm{~m} / \mathrm{s}=\frac{1560 \cdot 7.25 \mathrm{St}}{1.01 \mathrm{~m}}$
26) Kinematic Viscosity of Fluid given Reynolds Number in Shorter Length of Pipe $\boxed{\Omega}$
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{v}}=\frac{\mathrm{V}_{\mathrm{f}} \cdot \mathrm{D}_{\mathrm{p}}}{\mathrm{Re}}$
$\mathrm{ex} 7.251282 \mathrm{St}=\frac{1.12 \mathrm{~m} / \mathrm{s} \cdot 1.01 \mathrm{~m}}{1560}$
27) Pipe Diameter given Reynolds Number in Shorter Length of Pipe

$$
f \mathrm{x} \mathrm{D}_{\mathrm{p}}=\frac{\mathrm{Re} \cdot \mathrm{v}}{\mathrm{~V}_{\mathrm{f}}}
$$

ex $1.009821 \mathrm{~m}=\frac{1560 \cdot 7.25 \mathrm{St}}{1.12 \mathrm{~m} / \mathrm{s}}$
28) Reynolds Number in Shorter Length of Pipe
$f \mathrm{x} R \mathrm{Re}=\frac{\mathrm{V}_{\mathrm{f}} \cdot \mathrm{D}_{\mathrm{p}}}{\mathrm{v}}$
$\mathrm{ex} 1560.276=\frac{1.12 \mathrm{~m} / \mathrm{s} \cdot 1.01 \mathrm{~m}}{7.25 \mathrm{St}}$

Variables Used

- ∇ Volume of Submerged part of Object (Cubic Meter)
- A Cross Section Area of Column (Square Meter)
- $\mathbf{A}_{\mathbf{s}}$ Cross Section Area of Steel in Pipe (Square Meter)
- $\mathbf{D}_{\mathbf{p}}$ Diameter of Pipe (Meter)
- E Elastic Modulus (Newton per Square Meter)
- $\mathbf{F}_{\mathbf{B}}$ Buoyant Force (Newton)
- $\mathbf{f}_{\mathbf{z}}$ Vertical Force at Bottom end of Drill String (Kilonewton)
- L Length of Pipe Hanging in Well (Meter)
- L_{c} Lower Section of Drill String Length
- LCr ratio Column Slenderness Ratio
- $\mathbf{P}_{\mathbf{c r}}$ Critical Buckling Load for Drill String (Kilonewton)
- Re Reynolds Number
- T Tension on Vertical Drill String (Kilonewton)
- $\mathbf{T}_{\mathbf{e}}$ Effective Tension (Kilonewton)
- V Kinematic Viscosity (Stokes)
- $\mathbf{V}_{\mathbf{f}}$ Flow Velocity (Meter per Second)
- Z Coordinate measured Downward from Top
- ρ Mass Density (Kilogram per Cubic Meter)
- $\boldsymbol{\rho}_{\mathbf{m}}$ Density of Drilling Mud (Kilogram per Cubic Meter)
- $\boldsymbol{\rho}_{\mathbf{s}}$ Mass Density of Steel (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Meter (m)

Length Unit Conversion $\boxed{\square}$

- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2}) Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Force in Kilonewton (kN), Newton (N)

Force Unit Conversion

- Measurement: Mass Concentration in Kilogram per Cubic Meter (kg/m³) Mass Concentration Unit Conversion
- Measurement: Kinematic Viscosity in Stokes (St)

Kinematic Viscosity Unit Conversion

- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

Density Unit Conversion

- Measurement: Stress in Newton per Square Meter (N/m²) Stress Unit Conversion

Check other formula lists

- Hydrostatics Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

[^0]: $1439.957 \mathrm{~kg} / \mathrm{m}^{3}=\frac{146.86 \mathrm{kN}}{[\mathrm{g}] \cdot 0.65 \mathrm{~m}^{2} \cdot 16 \mathrm{~m}}$

