

Stresses Due to External Loads Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 19 Stresses Due to External Loads Formulas

Stresses Due to External Loads

1) Average Load on Pipe due to Wheel Load
$f \mathrm{x} \mathrm{W}_{\mathrm{avg}}=\frac{\mathrm{I}_{\mathrm{e}} \cdot \mathrm{C}_{\mathrm{t}} \cdot \mathrm{P}_{\text {wheel }}}{\mathrm{L}_{\mathrm{eff}}}$
ex $40.95 \mathrm{~N} / \mathrm{m}=\frac{2.73 \cdot 10.00 \cdot 75.375 \mathrm{~N}}{50.25 \mathrm{~m}}$
2) Compressive End Fiber Stress at Horizontal Diameter
$f x S=\left(\frac{3 \cdot \mathrm{w}^{\prime} \cdot \mathrm{d}_{\mathrm{cm}}}{8 \cdot \mathrm{t}_{\text {pipe }}^{2}}+\frac{\mathrm{w}^{\prime}}{2 \cdot \mathrm{t}_{\text {pipe }}}\right)$
ex $20.67888 \mathrm{kN} / \mathrm{m}^{2}=\left(\frac{3 \cdot 24 \mathrm{kN} / \mathrm{m} \cdot 0.90 \mathrm{~m}}{8 \cdot(0.98 \mathrm{~m})^{2}}+\frac{24 \mathrm{kN} / \mathrm{m}}{2 \cdot 0.98 \mathrm{~m}}\right)$
3) Concentrated Wheel Load given Average Load on Pipe
$f x P_{\text {wheel }}=\frac{W_{\text {avg }} \cdot L_{\text {eff }}}{I_{e} \cdot C_{t}}$
ex $75.375 \mathrm{~N}=\frac{40.95 \mathrm{~N} / \mathrm{m} \cdot 50.25 \mathrm{~m}}{2.73 \cdot 10.00}$
4) Constant which depend upon type of Soil for Load per meter Length of Pipe
$f \mathrm{fx} \mathrm{C}_{\mathrm{s}}=\frac{\mathrm{w}^{\prime}}{\mathrm{Y}_{\mathrm{F}} \cdot(\mathrm{B})^{2}}$
ex $1.333333=\frac{24 \mathrm{kN} / \mathrm{m}}{2000 \mathrm{~kg} / \mathrm{m}^{3} \cdot(3 \mathrm{~m})^{2}}$
5) Diameter of Pipe for Maximum End Fiber Stress
$\mathbf{f x} D_{\text {pipe }}=\frac{S}{\frac{3 \cdot \mathrm{w}^{\prime \prime}}{8 \cdot \mathrm{t}_{\text {pipe }}^{2}}}$
ex $0.910116 \mathrm{~m}=\frac{20.0 \mathrm{kN} / \mathrm{m}^{2}}{\frac{3 \cdot 56.28 \mathrm{kN} / \mathrm{m}}{8 \cdot(0.98 \mathrm{~m})^{2}}}$
6) Diameter of Pipe given Compressive End Fiber Stress
$f x D_{\text {pipe }}=\left(S-\frac{w^{\prime}}{2 \cdot t_{\text {pipe }}}\right) \cdot\left(\frac{8 \cdot \mathrm{t}_{\text {pipe }}^{2}}{3 \cdot \mathrm{w}^{\prime}}\right)$
ex $0.827556 \mathrm{~m}=\left(20.0 \mathrm{kN} / \mathrm{m}^{2}-\frac{24 \mathrm{kN} / \mathrm{m}}{2 \cdot 0.98 \mathrm{~m}}\right) \cdot\left(\frac{8 \cdot(0.98 \mathrm{~m})^{2}}{3 \cdot 24 \mathrm{kN} / \mathrm{m}}\right)$
7) Diameter of Pipe given Tensile End Fiber Stress
$f \times D_{\text {pipe }}=\left(S+\frac{w^{\prime}}{2 \cdot t_{\text {pipe }}}\right) \cdot\left(\frac{8 \cdot \mathrm{t}_{\text {pipe }}^{2}}{3 \cdot \mathrm{w}^{\prime}}\right)$
ex $3.440889 \mathrm{~m}=\left(20.0 \mathrm{kN} / \mathrm{m}^{2}+\frac{24 \mathrm{kN} / \mathrm{m}}{2 \cdot 0.98 \mathrm{~m}}\right) \cdot\left(\frac{8 \cdot(0.98 \mathrm{~m})^{2}}{3 \cdot 24 \mathrm{kN} / \mathrm{m}}\right)$
8) Effective Length of Pipe using Average Load on Pipe
$f \times L_{\text {eff }}=\frac{I_{e} \cdot C_{t} \cdot P_{\text {wheel }}}{W_{\text {avg }}}$
ex $50.25 \mathrm{~m}=\frac{2.73 \cdot 10.00 \cdot 75.375 \mathrm{~N}}{40.95 \mathrm{~N} / \mathrm{m}}$
9) Impact Factor using Average Load on Pipe
$f x I_{e}=\frac{W_{\text {avg }} \cdot L_{\text {eff }}}{\mathrm{C}_{\mathrm{t}} \cdot \mathrm{P}_{\text {wheel }}}$
ex $2.73=\frac{40.95 \mathrm{~N} / \mathrm{m} \cdot 50.25 \mathrm{~m}}{10.00 \cdot 75.375 \mathrm{~N}}$
10) Load Coefficient using Average Load on Pipe
$\mathrm{fx}_{\mathrm{x}} \mathrm{C}_{\mathrm{t}}=\frac{\mathrm{W}_{\mathrm{avg}} \cdot \mathrm{L}_{\mathrm{eff}}}{\mathrm{I}_{\mathrm{e}} \cdot \mathrm{P}_{\text {wheel }}}$
ex $10=\frac{40.95 \mathrm{~N} / \mathrm{m} \cdot 50.25 \mathrm{~m}}{2.73 \cdot 75.375 \mathrm{~N}}$
11) Load per Meter Length of Pipe
$f \mathrm{x} \mathrm{w}^{\prime}=\mathrm{C}_{\mathrm{s}} \cdot \mathrm{Y}_{\mathrm{F}} \cdot(\mathrm{B})^{2}$
ex $23.94 \mathrm{kN} / \mathrm{m}=1.33 \cdot 2000 \mathrm{~kg} / \mathrm{m}^{3} \cdot(3 \mathrm{~m})^{2}$
12) Load per Meter Length of Pipe for Compressive End Fiber Stress
$f \mathbf{x} \mathrm{w}^{\prime}=\frac{\mathrm{S}}{\frac{3 \cdot \mathrm{D}_{\text {pipe }}}{8 \cdot \mathrm{t}_{\text {pipe }}^{2}}+\frac{1}{2 \cdot \mathrm{t}_{\text {pipe }}}}$
ex $23.10737 \mathrm{kN} / \mathrm{m}=\frac{20.0 \mathrm{kN} / \mathrm{m}^{2}}{\frac{3 \cdot 0.91 \mathrm{~m}}{8 \cdot(0.98 \mathrm{~m})^{2}}+\frac{1}{2 \cdot 0.98 \mathrm{~m}}}$
13) Load per Meter Length of Pipe for Maximum End Fiber Stress
$f \mathbf{x x} \mathrm{w}^{\prime \prime}=\frac{\mathrm{S}}{\frac{3 \cdot \mathrm{D}_{\text {pipe }}}{8 \cdot t_{\text {pipe }}^{2}}}$
ex $56.28718 \mathrm{kN} / \mathrm{m}=\frac{20.0 \mathrm{kN} / \mathrm{m}^{2}}{\frac{3 \cdot 0.91 \mathrm{~m}}{8 \cdot(0.98 \mathrm{~m})^{2}}}$
14) Maximum End Fiber Stress on Horizontal Point
$f \mathrm{x}=\frac{3 \cdot \mathrm{w}^{\prime} \cdot \mathrm{D}_{\text {pipe }}}{8 \cdot \mathrm{t}_{\text {pipe }}^{2}}$
ex $8.527697 \mathrm{kN} / \mathrm{m}^{2}=\frac{3 \cdot 24 \mathrm{kN} / \mathrm{m} \cdot 0.91 \mathrm{~m}}{8 \cdot(0.98 \mathrm{~m})^{2}}$
15) Thickness of Pipe given Maximum End Fiber Stress
$\mathrm{fx}_{\mathrm{t}}^{\mathrm{pipe}} \mathrm{=} \sqrt{\frac{3 \cdot \mathrm{w}^{\prime} \cdot \mathrm{D}_{\text {pipe }}}{8 \cdot \mathrm{~S}}}$
ex $0.639922 \mathrm{~m}=\sqrt{\frac{3 \cdot 24 \mathrm{kN} / \mathrm{m} \cdot 0.91 \mathrm{~m}}{8 \cdot 20.0 \mathrm{kN} / \mathrm{m}^{2}}}$
16) Total Tension in Pipe using Water Pressure
$f \mathrm{f} \mathrm{T}_{\mathrm{mn}}=\left(\mathrm{P}_{\text {water }} \cdot \mathrm{A}_{\mathrm{cs}}\right)+\left(\frac{\gamma_{\text {water }} \cdot \mathrm{A}_{\mathrm{cs}} \cdot\left(\mathrm{V}_{\mathrm{w}}\right)^{2}}{\mathrm{~g}}\right)$
$\operatorname{ex} 2.36121 \mathrm{MN}=\left(5.5 \mathrm{~N} / \mathrm{m}^{2} \cdot 13 \mathrm{~m}^{2}\right)+\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 13 \mathrm{~m}^{2} \cdot(13.47 \mathrm{~m} / \mathrm{s})^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}\right)$
17) Total Tension in Pipe with known Head of Water
$f \mathrm{fx} \mathrm{T}_{\mathrm{mn}}=\left(\left(\gamma_{\mathrm{w}} \cdot \mathrm{H}\right) \cdot \mathrm{A}_{\mathrm{cs}}\right)+\left(\frac{\gamma_{\mathrm{w}} \cdot \mathrm{A}_{\mathrm{cs}} \cdot\left(\mathrm{V}_{\mathrm{w}}\right)^{2}}{\mathrm{~g}}\right)$
ex
$4.274089 \mathrm{MN}=\left(\left(9810 \mathrm{~N} / \mathrm{m}^{3} \cdot 15 \mathrm{~m}\right) \cdot 13 \mathrm{~m}^{2}\right)+\left(\frac{9810 \mathrm{~N} / \mathrm{m}^{3} \cdot 13 \mathrm{~m}^{2} \cdot(13.47 \mathrm{~m} / \mathrm{s})^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}\right)$
18) Unit Weight of Backfill Material for Load per Meter Length of Pipe
$f \mathrm{fx} \mathrm{Y}_{\mathrm{F}}=\frac{\mathrm{w}^{\prime}}{\mathrm{C}_{\mathrm{s}} \cdot(\mathrm{B})^{2}}$
ex $2005.013 \mathrm{~kg} / \mathrm{m}^{3}=\frac{24 \mathrm{kN} / \mathrm{m}}{1.33 \cdot(3 \mathrm{~m})^{2}}$
19) Width of Trench for Load per Meter Length of Pipe
$\mathrm{fx} B=\sqrt{\frac{\mathrm{w}^{\prime}}{\mathrm{C}_{\mathrm{s}} \cdot \mathrm{Y}_{\mathrm{F}}}}$
ex $3.003757 \mathrm{~m}=\sqrt{\frac{24 \mathrm{kN} / \mathrm{m}}{1.33 \cdot 2000 \mathrm{~kg} / \mathrm{m}^{3}}}$

Variables Used

- $\mathbf{A}_{\mathbf{c s}}$ Cross-Sectional Area (Square Meter)
- B Width of Trench (Meter)
- $\mathbf{C}_{\mathbf{s}}$ Coefficient Dependent on Soil in Environmental
- C_{t} Load Coefficient
- $\mathbf{d}_{\mathbf{c m}}$ Diameter of Pipe in Centimeter (Meter)
- $\mathbf{D}_{\text {pipe }}$ Diameter of Pipe (Meter)
- g Acceleration due to Gravity in Environment (Meter per Square Second)
- H Head of the Liquid (Meter)
- Ie Impact Factor
- Leff Effective Length of Pipe (Meter)
- $\mathbf{P}_{\text {water }}$ Water Pressure (Newton per Square Meter)
- $\mathbf{P}_{\text {wheel }}$ Concentrated Wheel Load (Newton)
- S Extreme Fiber Stress (Kilonewton per Square Meter)
- $\mathbf{T}_{\mathbf{m n}}$ Total Tension of Pipe in MN (Meganewton)
- $\mathbf{t}_{\text {pipe }}$ Thickness of Pipe (Meter)
- $\mathbf{V}_{\mathbf{w}}$ Flow Velocity of Fluid (Meter per Second)
- $\mathbf{W}_{\text {avg }}$ Average Load on Pipe in Newton per Meter (Newton per Meter)
- w' Load on Buried Pipe per Unit Length (Kilonewton per Meter)
- w" Load per Meter Length of Pipe (Kilonewton per Meter)
- Y_{F} Unit Weight of Fill (Kilogram per Cubic Meter)
- $Y_{\mathbf{w}}$ Unit Weight of Liquid (Newton per Cubic Meter)
- Ywater Unit Weight of Water in KN per Cubic Meter (Kilonewton per Cubic Meter)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Pressure in Newton per Square Meter ($\mathrm{N} / \mathrm{m}^{2}$)

Pressure Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Acceleration in Meter per Square Second (m/s²)

Acceleration Unit Conversion

- Measurement: Force in Newton (N), Meganewton (MN)

Force Unit Conversion

- Measurement: Surface Tension in Newton per Meter (N/m), Kilonewton per Meter (kN/m)
Surface Tension Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)

Density Unit Conversion

- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³), Newton per Cubic Meter ($\mathrm{N} / \mathrm{m}^{3}$)
Specific Weight Unit Conversion
- Measurement: Stress in Kilonewton per Square Meter (kN/m²)

Stress Unit Conversion

Check other formula lists

- Internal Water Pressure Formulas - Stresses Due to External Loads
- Stresses at Bends Formulas Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

