

Darcy's Weisbach Equation Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

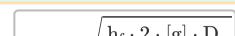
Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...



List of 10 Darcy's Weisbach Equation Formulas

Darcy's Weisbach Equation

1) Average Velocity of Flow given Head Loss

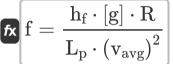
$$extbf{v}_{
m avg} = \sqrt{rac{ ext{h}_{
m f} \cdot 2 \cdot [
m g] \cdot ext{D}_{
m p}}{4 \cdot ext{f} \cdot ext{L}_{
m p}}}$$

ex
$$4.573932 ext{m/s} = \sqrt{rac{1.2 ext{m} \cdot 2 \cdot [ext{g}] \cdot 0.4 ext{m}}{4 \cdot 0.045 \cdot 2.5 ext{m}}}$$

2) Average Velocity of Flow given Internal Radius of Pipe 🗗

$$\left| \mathbf{r} \mathbf{v}_{\mathrm{avg}} = \sqrt{rac{\mathrm{h_f} \cdot [\mathrm{g}] \cdot \mathrm{R}}{\mathrm{f} \cdot \mathrm{L_p}}}
ight|$$

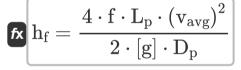
$$ext{ex} egin{aligned} 4.573932 ext{m/s} &= \sqrt{rac{1.2 ext{m} \cdot [ext{g}] \cdot 200 ext{mm}}{0.045 \cdot 2.5 ext{m}}} \end{aligned}$$


3) Darcy's Coefficient of Friction given Head Loss

 $\mathbf{f} = rac{\mathrm{h_f} \cdot 2 \cdot [\mathrm{g}] \cdot \mathrm{D_p}}{4 \cdot \mathrm{L_p} \cdot (\mathrm{v_{avg}})^2}$

Open Calculator

$$\boxed{ 0.045077 = \frac{1.2 \text{m} \cdot 2 \cdot [\text{g}] \cdot 0.4 \text{m}}{4 \cdot 2.5 \text{m} \cdot (4.57 \text{m/s})^2} }$$


4) Darcy's Coefficient of Friction given Internal Radius of Pipe

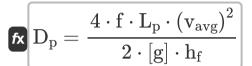
Open Calculator

ex
$$0.045077 = \frac{1.2 \text{m} \cdot [\text{g}] \cdot 200 \text{mm}}{2.5 \text{m} \cdot (4.57 \text{m/s})^2}$$

5) Head Loss due to Friction by Darcy Weisbach Equation

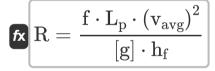
Open Calculator

$$\boxed{1.197938 \text{m} = \frac{4 \cdot 0.045 \cdot 2.5 \text{m} \cdot (4.57 \text{m/s})^2}{2 \cdot [\text{g}] \cdot 0.4 \text{m}}}$$


6) Head Loss due to Friction given Internal Radius of Pipe

 $\mathbf{f}_{\mathbf{f}} \mathbf{h}_{\mathrm{f}} = rac{\mathbf{f} \cdot \mathbf{L}_{\mathrm{p}} \cdot \left(\mathbf{v}_{\mathrm{avg}}
ight)^2}{\left[\mathbf{g}
ight] \cdot \mathbf{R}}$

Open Calculator


$$\boxed{ 1.197938 \text{m} = \frac{0.045 \cdot 2.5 \text{m} \cdot (4.57 \text{m/s})^2}{[\text{g}] \cdot 200 \text{mm}} }$$

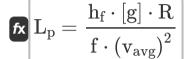
7) Internal Diameter of Pipe given Head Loss

Open Calculator

8) Internal Radius of Pipe given Head Loss

Open Calculator

9) Length of Pipe given Head Loss due to Friction 🗗



Open Calculator

$$\mathbf{L}_{\mathrm{p}} = rac{\mathrm{h_f} \cdot 2 \cdot [\mathrm{g}] \cdot \mathrm{D_p}}{4 \cdot \mathrm{f} \cdot \left(\mathrm{v_{avg}}
ight)^2}$$

$$= 2.504304 \text{m} = \frac{1.2 \text{m} \cdot 2 \cdot [\text{g}] \cdot 0.4 \text{m}}{4 \cdot 0.045 \cdot (4.57 \text{m/s})^2}$$

10) Length of Pipe given Internal Radius of Pipe

Open Calculator

$$= 2.504304 \text{m} = \frac{1.2 \text{m} \cdot [\text{g}] \cdot 200 \text{mm}}{0.045 \cdot (4.57 \text{m/s})^2}$$

Variables Used

- **D**_D Diameter of Pipe (Meter)
- f Darcy's Coefficient of Friction
- h_f Head Loss (Meter)
- Lp Length of Pipe (Meter)
- R Pipe Radius (Millimeter)
- Vavq Average Velocity in Pipe Fluid Flow (Meter per Second)

Constants, Functions, Measurements used

- Constant: [g], 9.80665
 Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m), Millimeter (mm)

 Length Unit Conversion
- Measurement: **Speed** in Meter per Second (m/s) Speed Unit Conversion

Check other formula lists

- Darcy's Weisbach Equation
 Formulas
- Hazen Williams Formula
 Formulas
- 🔹 Manning's Formula Formulas 🛂

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/19/2024 | 7:41:44 AM UTC

Please leave your feedback here...

