

Recuperation Test Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here ...

List of 34 Recuperation Test Formulas

Recuperation Test 🕑

Constant Depending upon Base Soil 🚰

1) Constant Depending upon Soil at Base of Well 🕑

$$\mathbf{x} \left[\mathrm{K} = \left(rac{\mathrm{A}_{\mathrm{cs}}}{\mathrm{t}}
ight) \cdot \mathrm{log} igg(\left(rac{\mathrm{h}_{\mathrm{d}}}{\mathrm{h}_{\mathrm{w2}}}
ight), e igg)
ight]$$

$$5.03397 = \left(\frac{20\mathrm{m}^2}{4\mathrm{h}}\right) \cdot \mathrm{log}\left(\left(\frac{27\mathrm{m}}{10\mathrm{m}}\right), e\right)$$

2) Constant Depending upon Soil at Base of Well given Clay Soil 🕑

fx
$$\mathrm{K}=0.25\cdot\mathrm{A_{cs}}$$

ex
$$5=0.25\cdot20\mathrm{m}^2$$

3) Constant Depending upon Soil at Base of Well given Fine Sand 🗹

fx
$$\mathbf{K}=0.5\cdot\mathbf{A}_{\mathrm{csw}}$$
 Open Calculator $oldsymbol{\mathbb{C}}$ ex $6.5=0.5\cdot13\mathrm{m}^2$

Open Calculator

Open Calculator

4) Constant Depending upon Soil at Base of Well given Specific Capacity Open Calculator $K = A_{sec} \cdot S_{si}$ ex. $4.99 = 2.495 \mathrm{m}^2 \cdot 2.0 \mathrm{m/s}$ 5) Constant Depending upon Soil at Base of Well with Base 10 💪 Open Calculator $\mathbf{K} = \left(rac{\mathrm{A}_{\mathrm{sec}} \cdot 2.303}{\mathrm{t}} ight) \cdot \log\left(\left(rac{\mathrm{h}_{\mathrm{d}}}{\mathrm{h}_{\mathrm{w}2}} ight), 10 ight)$ ex $3.330127 = \left(\frac{2.495 \text{m}^2 \cdot 2.303}{4\text{h}}\right) \cdot \log\left(\left(\frac{27\text{m}}{10\text{m}}\right), 10\right)$ 6) Constant Depression Head given Discharge and Time in Hours 💪 Open Calculator $\mathrm{H'} = rac{\mathbf{g}}{2.303\cdot\mathrm{A_{csw}}\cdot\mathrm{log}\left(\left(rac{\mathrm{h_d}}{\mathrm{h_{w2}}} ight),10 ight)}$ ex $0.057056 = {0.99 { m m}^3/ m s} \over {2.303 \cdot 13 { m m}^2 \cdot \log (({27 { m m} \over 10 { m m}}), 10)}$

7) Constant Depression Head given Discharge from Well 🖆

Discharge in Well 🕑

8) Discharge in Well given Constant Depression Head and Area of Well 🕑

$$f_{X} Q = \frac{2.303 \cdot A_{csw} \cdot H' \cdot \log\left(\left(\frac{h_{d}}{h_{w2}}\right), 10\right)}{t}$$

$$e_{X} 0.000183m^{3}/s = \frac{2.303 \cdot 13m^{2} \cdot 0.038 \cdot \log\left(\left(\frac{27m}{10m}\right), 10\right)}{4h}$$
9) Discharge in Well under Constant Depression Head f_{X}

$$Q = K \cdot H^{2}$$

$$e_{X} 0.19m^{3}/s = 5.0 \cdot 0.038$$
Cross Sectional Area of Well f_{X}
10) Cross-sectional Area of Well given Constant Depending upon Soil at Base f_{X}

fx
$$\mathbf{A}_{csw} = rac{\mathbf{K}_{b}}{\left(rac{1}{t}
ight) \cdot \log\left(\left(rac{\mathrm{h1}^{\prime}}{\mathrm{h_{w2}}}
ight), e
ight)}$$

ex $\mathbf{13.83522m^{2}} = rac{4.99\mathrm{m}^{3}/\mathrm{hr}}{\left(rac{1}{4\mathrm{h}}
ight) \cdot \log\left(\left(rac{20.0\mathrm{m}}{10\mathrm{m}}
ight), e
ight)}$

Open Calculator 🕑

11) Cross-sectional Area of Well given Constant Depending upon Soil at Base with Base 10

$$\begin{array}{c} \hline \textbf{k} \\ \textbf{A}_{sec} = \frac{K_b}{\left(\frac{2.303}{t}\right) \cdot \log\left(\left(\frac{h1'}{h_{w2}}\right), 10\right)} \\ \hline \textbf{k} \\ 2.609014m^2 = \frac{4.99m^3/hr}{\left(\frac{2.303}{4h}\right) \cdot \log\left(\left(\frac{20.0m}{10m}\right), 10\right)} \\ \hline \textbf{k} \\ \textbf{2}.609014m^2 = \frac{4.99m^3/hr}{\left(\frac{2.303}{4h}\right) \cdot \log\left(\left(\frac{20.0m}{10m}\right), 10\right)} \\ \hline \textbf{k} \\ \textbf{k} \\ \textbf{k} \\ \textbf{csw} = \frac{Q}{S_{si} \cdot H'} \\ \hline \textbf{k} \\ \textbf{k$$

ex
$$19.9556\mathrm{m} = rac{20.0\mathrm{m}}{\mathrm{exp}(2\mathrm{m/h}\cdot4\mathrm{h})}$$

14) Depression Head in Well at Time T after Pumping Stopped and Clay Soil is Present

15) Depression Head in Well at Time T after Pumping Stopped and Fine Sand is Present

Open Calculator

16) Depression Head in Well at Time T after Pumping Stopped with Base10 and Clay soil is Present

17) Depression Head in Well at Time T after Pumping Stopped with Base 10 and Fine Sand is Present

18) Depression Head in Well at Time T given Pumping Stopped and Constant

19) Depression Head in Well at Time T given Pumping Stopped and Constant with Base 10 💪

Depression Head when Pumping Stopped C

20) Depression Head in well given pumping stopped and clay soil is present

fx
$$\mathbf{h}_{\mathrm{d}} = \mathbf{h}_{\mathrm{w2}} \cdot \exp(0.25 \cdot \Delta \mathbf{t})$$

ex $34.90343m = 10m \cdot \exp(0.25 \cdot 5s)$

21) Depression Head in Well given Pumping Stopped and Coarse Sand is Present

fx
$$\mathbf{h}_{\mathrm{d}} = \mathbf{h}_{\mathrm{w2}} \cdot \exp(1 \cdot \Delta_{\mathrm{t}})$$

 $\left| \mathbf{h}_{\mathrm{d}} = \mathrm{h}_{\mathrm{w2}} \cdot \mathrm{exp} \left(rac{\mathrm{K} \cdot \mathrm{t}}{\mathrm{A}_{\mathrm{cs}}}
ight)
ight|$

$$27.45601 \text{m} = 10 \text{m} \cdot \exp(1 \cdot 1.01 \text{s})$$

22) Depression Head in Well given Pumping Stopped and Constant 🕑

Open Calculator 🕑

ex
$$27.18282 \mathrm{m} = 10 \mathrm{m} \cdot \mathrm{exp} \left(rac{5.0 \cdot 4 \mathrm{h}}{20 \mathrm{m}^2}
ight)$$

23) Depression Head in Well given Pumping Stopped and Constant with Base 10

fx
$$\mathbf{h}_{\mathrm{d}} = \mathbf{h}_{\mathrm{w2}} \cdot 10^{rac{\mathrm{K}\cdot\mathrm{t}}{\mathrm{A}_{\mathrm{cs}}\cdot 2.303}}$$

ex $27.17792\mathrm{m} = 10\mathrm{m}\cdot 10^{rac{5.0\cdot4\mathrm{h}}{20\mathrm{m}^{2}\cdot 2.303}}$

Open Calculator

Open Calculator

Open Calculator

24) Depression Head in Well given Pumping Stopped and Fine Sand is Present

fx $\mathrm{h_d} = \mathrm{h_{w2}} \cdot \exp(0.5 \cdot \Delta_\mathrm{t})$ Open Calculator ex $16.56986m = 10m \cdot exp(0.5 \cdot 1.01s)$ 25) Depression Head in Well given Pumping Stopped with Base 10 and Clay soil is Present 🗹 Open Calculator fx $\mathbf{h}_{\mathrm{d}} = \mathbf{h}_{\mathrm{w2}} \cdot 10^{rac{0.25\cdot\Delta \mathrm{t}}{2.303}}$ ex $34.89557 \mathrm{m} = 10 \mathrm{m} \cdot 10^{rac{0.25 \cdot 5 \mathrm{s}}{2.303}}$ 26) Depression Head in Well given Pumping Stopped with Base 10 and Coarse Sand is Present Open Calculator fx $h_d = h_{w2} \cdot 10^{rac{1 \cdot \Delta_t}{2.303}}$ ex $27.45101 \text{m} = 10 \text{m} \cdot 10^{\frac{1 \cdot 1.01 \text{s}}{2.303}}$ 27) Depression Head in Well given Pumping Stopped with Discharge 🗹 fx $h_{d} = h_{w2} \cdot 10^{rac{Q\cdot\Delta_{t}}{A_{cs}\cdot H^{\prime}\cdot 2.303}}$ Open Calculator

ex
$$37.26319 \mathrm{m} = 10 \mathrm{m} \cdot 10^{\frac{0.99 \mathrm{m}^2/\mathrm{s} \cdot 1.01 \mathrm{s}}{20 \mathrm{m}^2 \cdot 0.038 \cdot 2.303}}$$

Recuperate Time 🕑

28) Time in Hours given Clay Soil 子

$$\mathbf{x} \mathbf{t} = \left(rac{1}{0.25}
ight) \cdot \log\!\left(\left(rac{\mathrm{h}_{\mathrm{d}}}{\mathrm{h}_{\mathrm{w}2}}
ight), e
ight)$$

Open Calculator 🖸

Open Calculator

Open Calculator

$$\textbf{ex} \quad 4.027176 \textbf{h} = \left(\frac{1}{0.25}\right) \cdot \log \left(\left(\frac{27 \textbf{m}}{10 \textbf{m}}\right), e\right)$$

29) Time in Hours given Coarse Sand 💪

fx $\mathbf{t} = \log\left(\left(\frac{\mathbf{h}_{\mathrm{d}}}{\mathbf{h}_{\mathrm{w}2}}\right), e\right)$ ex $1.006794\mathrm{h} = \log\left(\left(\frac{27\mathrm{m}}{10\mathrm{m}}\right), e\right)$

30) Time in Hours given Constant Depending upon Soil at Base 🕑

fx
$$\mathbf{t} = \left(\frac{\mathbf{A}_{\mathrm{csw}}}{\mathbf{K}}\right) \cdot \log\left(\left(\frac{\mathbf{h}_{\mathrm{d}}}{\mathbf{h}_{\mathrm{w2}}}\right), e\right)$$

ex $2.617665\mathbf{h} = \left(\frac{13\mathbf{m}^2}{5.0}\right) \cdot \log\left(\left(\frac{27\mathbf{m}}{10\mathbf{m}}\right), e\right)$

31) Time in Hours given Constant Depression Head and Area of Well

$$f_{X} t = \frac{2.303 \cdot A_{csw} \cdot H' \cdot \log\left(\left(\frac{h_{d}}{h_{w2}}\right), 10\right)}{Q}$$

$$e_{X} 2.664048h = \frac{2.303 \cdot 13m^{2} \cdot 0.038 \cdot \log\left(\left(\frac{27m}{10m}\right), 10\right)}{0.99m^{3}/s}$$

32) Time in Hours given Fine Sand 🤄

fx
$$\mathbf{t} = igg(rac{1}{0.5}igg) \cdot \logigg(igg(rac{\mathbf{h}_{ ext{d}}}{\mathbf{h}_{ ext{w2}}}igg), eigg)$$

ex
$$2.013588h = \left(\frac{1}{0.5}\right) \cdot \log\left(\left(\frac{27m}{10m}\right), e\right)$$

33) Time in Hours with Base 10 given Coarse Sand 子

fx
$$\mathbf{t} = \left(rac{2.303}{1}
ight) \cdot \log\!\left(\left(rac{\mathbf{h}_{\mathrm{d}}}{\mathbf{h}_{\mathrm{w}2}}
ight), 10
ight)$$

ex
$$5.338881h = \left(\frac{2.303}{1}\right) \cdot \log\left(\left(\frac{27m}{10m}\right), 10\right)$$

Open Calculator 🕑

34) Time in Hours with Base 10 given Fine Sand 🕑

$$f_{\mathbf{X}} \mathbf{t} = \left(\frac{2.303}{0.5}\right) \cdot \log\left(\left(\frac{\mathbf{h}_{\mathrm{d}}}{\mathbf{h}_{\mathrm{w}2}}\right), 10\right)$$
$$e_{\mathbf{X}} 10.67776\mathbf{h} = \left(\frac{2.303}{0.5}\right) \cdot \log\left(\left(\frac{27\mathrm{m}}{10\mathrm{m}}\right), 10\right)$$

Open Calculator 🕑

Variables Used

- A_{cs} Cross Sectional Area (Square Meter)
- Acsw Cross-Sectional Area of Well (Square Meter)
- Asec Cross-Sectional Area given Specific Capacity (Square Meter)
- H' Constant Depression Head
- h_d Depression Head (Meter)
- h_{dp} Depression Head after Pumping Stopped (Meter)
- hw1 Depression Head in Well 1 (Meter)
- h_{w2} Depression Head in Well 2 (Meter)
- h1' Depression Head in Well (Meter)
- K Constant
- K_a Specific Capacity (Meter per Hour)
- K_b Constant Dependent on Base Soil (Cubic Meter per Hour)
- **Q** Discharge in Well (Cubic Meter per Second)
- S_{si} Specific Capacity in SI unit (Meter per Second)
- t Time (Hour)
- Δ_t Time Interval (Second)
- Δt Total Time Interval (Second)

Constants, Functions, Measurements used

- Constant: e, 2.71828182845904523536028747135266249
 Napier's constant
- Function: exp, exp(Number) n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: log, log(Base, Number) Logarithmic function is an inverse function to exponentiation.
- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Time in Hour (h), Second (s) *Time Unit Conversion*
- Measurement: Area in Square Meter (m²) Area Unit Conversion
- Measurement: Speed in Meter per Second (m/s), Meter per Hour (m/h) Speed Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s), Cubic Meter per Hour (m³/hr)
 Volumetric Flow Rate Unit Conversion

Constant Level Pumping Test
 Recuperation Test Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

10/7/2024 | 6:32:37 AM UTC

Please leave your feedback here ...

