
calculatoratoz.com

unitsconverters.com

Wavelength Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 14 Wavelength Formulas

Wavelength

1) Deepwater Wavelength given Celerity of Deepwater Wave
$f \mathbf{x} \lambda_{\mathrm{o}}=\frac{\mathrm{C}_{\mathrm{o}}^{2} \cdot 2 \cdot \pi}{[\mathrm{~g}]}$
Open Calculator
$\mathrm{ex} 12.97431 \mathrm{~m}=\frac{(4.5 \mathrm{~m} / \mathrm{s})^{2} \cdot 2 \cdot \pi}{[\mathrm{~g}]}$
2) Deepwater Wavelength given Deepwater Celerity
$f_{\mathrm{x}} \lambda_{\mathrm{o}}=\frac{\lambda \cdot \mathrm{C}_{\mathrm{o}}}{\mathrm{C}}$
Open Calculator
$\mathrm{ex} 12.99857 \mathrm{~m}=\frac{10.11 \mathrm{~m} \cdot 4.5 \mathrm{~m} / \mathrm{s}}{3.5 \mathrm{~m} / \mathrm{s}}$
3) Deepwater Wavelength given Units of Feet Σ
$\mathrm{fx}_{\mathrm{x}} \lambda_{\mathrm{ft}}=5.12 \cdot \mathrm{~T}^{2}$
Open Calculator
ex $151.1811 \mathrm{ft}=5.12 \cdot(3 \mathrm{~s})^{2}$
4) Deepwater Wavelength given Wave Celerity

-

$f \mathrm{x} \lambda_{\mathrm{o}}=\mathrm{C}_{\mathrm{o}} \cdot \mathrm{T}$
Open Calculator
ex $13.5 \mathrm{~m}=4.5 \mathrm{~m} / \mathrm{s} \cdot 3 \mathrm{~s}$
5) Deepwater Wavelength when SI systems Units of meters is Considered $\boxed{\square}$
$f \mathrm{x} \lambda_{\mathrm{o}}=1.56 \cdot \mathrm{~T}^{2}$
Open Calculator
ex $14.04 \mathrm{~m}=1.56 \cdot(3 \mathrm{~s})^{2}$
6) Eckert's Equation for Wavelength
$\mathrm{fx}_{\mathrm{x}} \lambda=\lambda_{\mathrm{o}} \cdot \sqrt{\tanh \left(\frac{2 \cdot \pi \cdot \mathrm{~d}}{\lambda_{\mathrm{o}}}\right)}$
Open Calculator 〔
ex $10.35637 \mathrm{~m}=13 \mathrm{~m} \cdot \sqrt{\tanh \left(\frac{2 \cdot \pi \cdot 1.55 \mathrm{~m}}{13 \mathrm{~m}}\right)}$
7) Long Wave Simplification for Wavelength
$f \mathrm{x} \lambda=\mathrm{T} \cdot \sqrt{[\mathrm{g}] \cdot \mathrm{d}}$
Open Calculator
ex $11.69627 \mathrm{~m}=3 \mathrm{~s} \cdot \sqrt{[\mathrm{~g}] \cdot 1.55 \mathrm{~m}}$
8) Water Depth given Wave Celerity and Wavelength \longleftarrow

ex $1.556351 \mathrm{~m}=\frac{10.11 \mathrm{~m} \cdot a \tanh \left(\frac{2 \cdot \pi \cdot 3.5 \mathrm{~m} / \mathrm{s}}{[\mathrm{g} \cdot 3 \mathrm{~s}}\right)}{2 \cdot \pi}$
9) Wavelength as Function of Depth and Wave Period
$\mathrm{f}_{\mathrm{x}} \lambda=\left(\frac{[\mathrm{g}] \cdot \mathrm{T}^{2}}{2 \cdot \pi}\right) \cdot \tanh (\mathrm{k} \cdot \mathrm{d})$
Open Calculator
ex $14.04699 \mathrm{~m}=\left(\frac{[\mathrm{g}] \cdot(3 \mathrm{~s})^{2}}{2 \cdot \pi}\right) \cdot \tanh (5 \cdot 1.55 \mathrm{~m})$
10) Wavelength as Function of Water Depth and Wave Period
$\mathrm{fx} \lambda=\left(\frac{[\mathrm{g}] \cdot \mathrm{T}}{\omega}\right) \cdot \tanh (\mathrm{k} \cdot \mathrm{d})$
Open Calculator
ex $11.76798 \mathrm{~m}=\left(\frac{[\mathrm{g}] \cdot 3 \mathrm{~s}}{2.5 \mathrm{rad} / \mathrm{s}}\right) \cdot \tanh (5 \cdot 1.55 \mathrm{~m})$
11) Wavelength given Deepwater Celerity and Deepwater Wavelength
$\mathrm{fx} \lambda=\frac{\lambda_{\mathrm{o}} \cdot \mathrm{C}}{\mathrm{C}_{\mathrm{o}}}$
Open Calculator
ex $10.11111 \mathrm{~m}=\frac{13 \mathrm{~m} \cdot 3.5 \mathrm{~m} / \mathrm{s}}{4.5 \mathrm{~m} / \mathrm{s}}$
12) Wavelength given Deepwater Wavelength
$\mathrm{f}_{\mathrm{x}} \lambda=\lambda_{\mathrm{o}} \cdot \tanh (\mathrm{k} \cdot \mathrm{d})$
Open Calculator
ex $13 \mathrm{~m}=13 \mathrm{~m} \cdot \tanh (5 \cdot 1.55 \mathrm{~m})$
13) Wavelength given Wave Celerity
$\mathrm{f}_{\mathrm{x}} \lambda=\mathrm{C} \cdot \mathrm{T}$
Open Calculator
ex $10.5 \mathrm{~m}=3.5 \mathrm{~m} / \mathrm{s} \cdot 3 \mathrm{~s}$
14) Wavelength given Wave Celerity and Wave Speed
$\mathrm{fx} \lambda=\frac{2 \cdot \pi \cdot \mathrm{~d}}{a \tanh \left(\frac{2 \cdot \mathrm{C} \cdot \pi}{[\mathrm{g}] \cdot \mathrm{T}}\right)}$
ex $10.06874 \mathrm{~m}=\frac{2 \cdot \pi \cdot 1.55 \mathrm{~m}}{a \tanh \left(\frac{2 \cdot 3.5 \mathrm{~m} / \mathrm{s} \cdot \pi}{[\mathrm{g}] \cdot 3 \mathrm{~s}}\right)}$

Variables Used

- C Wave Celerity (Meter per Second)
- $\mathbf{C}_{\mathbf{o}}$ Deepwater Wave Celerity (Meter per Second)
- d Water Depth (Meter)
- k Wave Number
- T Wave Period (Second)
- $\boldsymbol{\lambda}$ Wavelength (Meter)
- $\boldsymbol{\lambda}_{\mathrm{ft}}$ DeepWater Wavelength in Feet (Foot)
- $\boldsymbol{\lambda}_{\mathbf{0}}$ DeepWater Wavelength (Meter)
- $\boldsymbol{\omega}$ Wave Angular Frequency (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Function: atanh, atanh(Number)

The inverse hyperbolic tangent function returns the value whose hyperbolic tangent is a number.

- Function: sqrt, sqrt(Number) A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tanh, tanh(Number)

The hyperbolic tangent function (tanh) is a function that is defined as the ratio of the hyperbolic sine function (sinh) to the hyperbolic cosine function (cosh).

- Measurement: Length in Meter (m), Foot (ft)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Angular Frequency in Radian per Second (rad/s) Angular Frequency Unit Conversion

Check other formula lists

- Cnoidal Wave Theory Formulas
- Wave Parameters Formulas
- Wave Period Formulas
- Horizontal and Vertical Semi-Axis - Wave Period Distribution and of Ellipse Formulas
- Parametric Spectrum Models Formulas
- Wave Energy Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/17/2024 | 7:10:01 AM UTC
Please leave your feedback here...

