Attractive Force Potentials Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Attractive Force Potentials Formulas

Attractive Force Potentials

1) Attractive Force Potentials per unit Mass for Moon
$\mathrm{fx}_{\mathrm{X}} \mathrm{V}_{\mathrm{M}}=\frac{\mathrm{f} \cdot \mathrm{M}}{\mathrm{r}_{\mathrm{S} / \mathrm{MX}}}$
ex $5.7 \mathrm{E}^{\wedge} 17=\frac{2 \cdot 7.35 \mathrm{E} 22 \mathrm{~kg}}{256 \mathrm{~km}}$
2) Attractive Force Potentials per unit Mass for Moon given Harmonic Polynomial Expansion
$f_{\mathrm{x}} \mathrm{V}_{\mathrm{M}}=(\mathrm{f} \cdot \mathrm{M}) \cdot\left(\frac{R_{M}^{2}}{r_{m}^{3}}\right) \cdot \mathrm{P}_{\mathrm{M}}$
ex $5.1 \mathrm{E}^{\wedge} 17=(2 \cdot 7.35 \mathrm{E} 22 \mathrm{~kg}) \cdot\left(\frac{(6371 \mathrm{~km})^{2}}{(384467 \mathrm{~km})^{3}}\right) \cdot 4.9 \mathrm{E}^{\wedge} 6$
3) Attractive Force Potentials per unit Mass for Sun
$\mathrm{fx} \mathrm{V}_{\mathrm{s}}=\frac{\mathrm{f} \cdot \mathrm{M}_{\text {sun }}}{\mathrm{r}_{\mathrm{S} / \mathrm{MX}}}$
ex $1.6 \mathrm{E}^{\wedge} 25=\frac{2 \cdot 1.989 \mathrm{E} 30 \mathrm{~kg}}{256 \mathrm{~km}}$
4) Attractive Force Potentials per unit Mass for Sun given Harmonic Polynomial Expansion
$f \mathrm{f} \mathrm{V}_{\mathrm{s}}=\mathrm{f} \cdot \mathrm{M}_{\text {sun }} \cdot\left(\frac{\mathrm{R}_{\mathrm{M}}^{2}}{\mathrm{r}_{\mathrm{s}}^{3}}\right) \cdot \mathrm{P}_{\mathrm{s}}$
ex $1.4 \mathrm{E}^{\wedge} 25=2 \cdot 1.989 \mathrm{E} 30 \mathrm{~kg} \cdot\left(\frac{(6371 \mathrm{~km})^{2}}{(150000000 \mathrm{~km})^{3}}\right) \cdot 3 \mathrm{E} 14$
5) Distance from Center of Earth to Center of Moon given Attractive Force Potentials
$f \mathrm{fx} \mathrm{r}_{\mathrm{m}}=\left(\mathrm{R}_{\mathrm{M}}^{2} \cdot \mathrm{f} \cdot\left[\text { Moon-M] } \frac{\mathrm{P}_{\mathrm{M}}}{\mathrm{V}_{\mathrm{M}}}\right)^{\frac{1}{3}}\right.$
ex $371480.3 \mathrm{~km}=\left((6371 \mathrm{~km})^{2} \cdot 2 \cdot[\text { Moon-M }] \cdot \frac{4.9 \mathrm{E}^{\wedge} 6}{5.7 \mathrm{E} 17}\right)^{\frac{1}{3}}$
6) Mass of Moon given Attractive Force Potentials
$\mathrm{M}=\frac{\mathrm{V}_{\mathrm{M}} \cdot \mathrm{r}_{\mathrm{S} / \mathrm{MX}}}{\mathrm{f}}$
ex $7.3 \mathrm{E}^{\wedge} 22 \mathrm{~kg}=\frac{5.7 \mathrm{E} 17 \cdot 256 \mathrm{~km}}{2}$
7) Mass of Moon given Attractive Force Potentials with Harmonic Polynomial Expansion
$f \times M=\frac{V_{M} \cdot r_{m}^{3}}{[E \operatorname{Earth}-R]^{2} \cdot \mathrm{f} \cdot \mathrm{P}_{\mathrm{M}}}$
ex $8.1 \mathrm{E}^{\wedge} 22 \mathrm{~kg}=\frac{5.7 \mathrm{E} 17 \cdot(384467 \mathrm{~km})^{3}}{[\text { Earth-R] }]^{2} \cdot 2 \cdot 4.9 \mathrm{E}^{\wedge} 6}$
8) Mass of Sun given Attractive Force Potentials
$f \times \mathrm{M}_{\text {sun }}=\frac{\mathrm{V}_{\mathrm{s}} \cdot \mathrm{r}_{\mathrm{S} / \mathrm{MX}}}{\mathrm{f}}$
ex $2 \mathrm{E}^{\wedge} 30 \mathrm{~kg}=\frac{1.6 \mathrm{E} 25 \cdot 256 \mathrm{~km}}{2}$
9) Mass of Sun given Attractive Force Potentials with Harmonic Polynomial Expansion
$f \mathrm{x} \mathrm{M}_{\text {sun }}=\frac{\mathrm{V}_{\mathrm{s}} \cdot \mathrm{r}_{\mathrm{s}}^{3}}{[\text { Earth-R }]^{2} \cdot \mathrm{f} \cdot \mathrm{P}_{\mathrm{s}}}$
ex $2.2 \mathrm{E}^{\wedge} 30 \mathrm{~kg}=\frac{1.6 \mathrm{E} 25 \cdot(150000000 \mathrm{~km})^{3}}{[\text { Earth-R }]^{2} \cdot 2 \cdot 3 \mathrm{E} 14}$
10) Mean Radius of Earth given Attractive Force Potentials per Unit Mass for Moon
$f_{\mathrm{x}} \mathrm{R}_{\mathrm{M}}=\sqrt{\frac{\mathrm{V}_{\mathrm{M}} \cdot \mathrm{r}_{\mathrm{m}}^{3}}{\mathrm{f} \cdot \mathrm{M} \cdot \mathrm{P}_{\mathrm{M}}}}$
ex $6706.089 \mathrm{~km}=\sqrt{\frac{5.7 \mathrm{E} 17 \cdot(384467 \mathrm{~km})^{3}}{2 \cdot 7.35 \mathrm{E} 22 \mathrm{~kg} \cdot 4.9 \mathrm{E}^{\wedge} 6}}$
11) Mean Radius of Earth given Attractive Force Potentials per Unit Mass for Sun
$f \mathrm{fx} \mathrm{R}_{\mathrm{M}}=\sqrt{\frac{\mathrm{V}_{\mathrm{s}} \cdot \mathrm{r}_{\mathrm{s}}^{3}}{\mathrm{f} \cdot \mathrm{M}_{\mathrm{sun}} \cdot \mathrm{P}_{\mathrm{s}}}}$
$\mathrm{ex} 6726.728 \mathrm{~km}=\sqrt{\frac{1.6 \mathrm{E} 25 \cdot(150000000 \mathrm{~km})^{3}}{2 \cdot 1.989 \mathrm{E} 30 \mathrm{~kg} \cdot 3 \mathrm{E} 14}}$
12) Moon's Tide-generating Attractive Force Potential
$\mathrm{fx} \mathrm{V}_{\mathrm{M}}=\mathrm{f} \cdot \mathrm{M} \cdot\left(\left(\frac{1}{\mathrm{r}_{\mathrm{S} / \mathrm{MX}}}\right)-\left(\frac{1}{\mathrm{r}_{\mathrm{m}}}\right)-\left([\right.\right.$ Earth -R$\left.\left.] \cdot \frac{\cos \left(\theta_{\mathrm{m} / \mathrm{s}}\right)}{\mathrm{r}_{\mathrm{m}}^{2}}\right)\right)$
ex $5.7 \mathrm{E}^{\wedge} 17=2 \cdot 7.35 \mathrm{E} 22 \mathrm{~kg} \cdot\left(\left(\frac{1}{256 \mathrm{~km}}\right)-\left(\frac{1}{384467 \mathrm{~km}}\right)-\left([\operatorname{Earth}-\mathrm{R}] \cdot \frac{\cos \left(12.5^{\circ}\right)}{(384467 \mathrm{~km})^{2}}\right)\right)$
13) Tide-generating Attractive Force Potential for Sun
$f_{x} V_{s}=\left(f \cdot M_{\text {sun }}\right) \cdot\left(\left(\frac{1}{r_{S / M X}}\right)-\left(\frac{1}{r_{s}}\right)-\left(R_{M} \cdot \frac{\cos \left(\theta_{m / s}\right)}{r_{s}^{2}}\right)\right)$
$1.6 \mathrm{E}^{\wedge} 25=(2 \cdot 1.989 \mathrm{E} 30 \mathrm{~kg}) \cdot\left(\left(\frac{1}{256 \mathrm{~km}}\right)-\left(\frac{1}{150000000 \mathrm{~km}}\right)-\left(6371 \mathrm{~km} \cdot \frac{\cos \left(12.5^{\circ}\right)}{(150000000 \mathrm{~km})^{2}}\right)\right)$

Variables Used

- f Universal Constant
- M Mass of the Moon (Kilogram)
- $\mathbf{M}_{\text {sun }}$ Mass of the Sun (Kilogram)
- $\mathbf{P}_{\mathbf{M}}$ Harmonic Polynomial Expansion Terms for Moon
- $\mathbf{P}_{\mathbf{s}}$ Harmonic Polynomial Expansion Terms for Sun
- \mathbf{r}_{m} Distance from center of Earth to center of Moon (Kilometer)
- $\mathbf{R}_{\mathbf{M}}$ Mean Radius of the Earth (Kilometer)
- $\mathbf{r}_{\mathbf{s}}$ Distance (Kilometer)
- $\mathbf{r}_{\mathbf{S} / \mathrm{MX}}$ Distance of Point (Kilometer)
- $\mathbf{V}_{\mathbf{M}}$ Attractive Force Potentials for Moon
- $\mathbf{V}_{\mathbf{s}}$ Attractive Force Potentials for Sun
- $\boldsymbol{\theta}_{\mathrm{m} / \mathrm{s}}$ Angle made by the Distance of Point (Degree)

Constants, Functions, Measurements used

- Constant: [Earth-R], 6371.0088

Earth mean radius

- Constant: [Moon-M], 7.3458E+22

Moon mass

- Function: cos, $\cos ($ Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Kilometer (km)

Length Unit Conversion

- Measurement: Weight in Kilogram (kg) Weight Unit Conversion
- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

Check other formula lists

- Attractive Force Potentials Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

