

Load and Strength Characteristics Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 13 Load and Strength Characteristics Formulas

Load and Strength Characteristics

1) Imaginary Force at Center of Gravity of Bolted Joint given Primary Shear Force

fx
$$P = (P_1') \cdot n$$

Open Calculator

$$= 12000 N = 3000 N \cdot 4$$

2) Number of Bolts given Primary Shear Force

$$\mathbf{fx} = \frac{P}{P_1},$$

Open Calculator

$$4 = \frac{12000N}{3000N}$$

3) Pre Load in Bolt given Amount of Compression in Parts Joined by Bolt

$$\mathbf{f} \mathbf{x} | \mathrm{P_i} = \delta_\mathrm{c} \cdot \mathbf{k}$$

Open Calculator 🖸

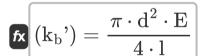
$$\texttt{ex} \ 16500 \texttt{N} = 11 \texttt{mm} \cdot 1500 \texttt{N} / \texttt{mm}$$

4) Pre Load in Bolt given Elongation of Bolt

fx $P_{i} = \delta_{b} \cdot (k_{b}')$

Open Calculator

Open Calculator


Open Calculator 2

Open Calculator G

- ex $15850 \text{N} = 0.05 \text{mm} \cdot 3.17 \text{E}^5 \text{N/mm}$
- 5) Pre Load in Bolt given Wrench Torque
- extstyle ext
- ex $16500 \mathrm{N} = \frac{49500 \mathrm{N*mm}}{0.2 \cdot 15 \mathrm{mm}}$
- 6) Resultant Load on Bolt given Pre Load and External Load

7) Stiffness of Bolt given Thickness of Parts Joined by Bolt G

- fx $P_{
 m b}=P_{
 m i}+\Delta P$
- $\boxed{ 19000 \mathrm{N} = 16500 \mathrm{N} + 2500 \mathrm{N} }$

 $ag{318086.3 ext{N/mm}} = rac{\pi \cdot (15 ext{mm})^2 \cdot 207000 ext{N/mm}^2}{4 \cdot 115 ext{mm}}$

8) Tensile Force on Bolt given Maximum Tensile Stress in Bolt 🗗

 $\left| \mathbf{P}_{\mathrm{tb}} = \sigma \mathrm{t}_{\mathrm{max}} \cdot rac{\pi}{4} \cdot \mathrm{d}_{\mathrm{c}}^{2}
ight|$

Open Calculator 🗗

 $= 88 \mathrm{N/mm^2} \cdot \frac{\pi}{4} \cdot (12 \mathrm{mm})^2$

9) Tensile Force on Bolt in Shear

 $\left[\mathbf{f_{t}}
ight] \mathrm{P_{tb}} = \pi \cdot \mathrm{d_c} \cdot \mathrm{h} \cdot rac{\mathrm{S_{sy}}}{\mathrm{f_s}}$

Open Calculator

10) Tensile Force on Bolt in Tension

 $\left| \mathbf{F}_{\mathrm{tb}}
ight| \mathbf{P}_{\mathrm{tb}} = rac{\pi}{4} \cdot \mathrm{d_{c}^{2}} \cdot rac{\mathrm{S}_{\mathrm{yt}}}{\mathrm{f_{s}}}
ight|$

Open Calculator 🖒

 $ext{ex} 10009.11 ext{N} = rac{\pi}{4} \cdot (12 ext{mm})^2 \cdot rac{265.5 ext{N/mm}^2}{3}$

11) Thickness of Parts Held Together by Bolt given Stiffness of Bolt 🕑

 $132.6\mathrm{N/mm^2}$

 $l = rac{\pi \cdot \mathrm{d}^2 \cdot \mathrm{E}}{4 \cdot (\mathrm{k_b'})}$

Open Calculator

ex $115.3941 \mathrm{mm} = \frac{\pi \cdot (15 \mathrm{mm})^2 \cdot 207000 \mathrm{N/mm^2}}{4 \cdot 3.17 \mathrm{E}^5 \mathrm{N/mm}}$

12) Wrench Torque Required to Create Required Pre Load C

fx $M_{
m t} = 0.2 \cdot {
m P_i \cdot d}$

Open Calculator

 $49500N*mm = 0.2 \cdot 16500N \cdot 15mm$

13) Young's Modulus of Bolt given Stiffness of Bolt 🛂

$$\mathbf{E} = rac{(k_b{'}) \cdot l \cdot 4}{d^2 \cdot \pi}$$

$$extbf{ex} 206293.1 ext{N/mm}^2 = rac{3.17 ext{E} ilde{5} ext{N/mm} \cdot 115 ext{mm} \cdot 4}{\left(15 ext{mm}
ight)^2 \cdot \pi}$$

Variables Used

- ΔP Load due to External Force on Bolt (Newton)
- **d** Nominal Bolt Diameter (Millimeter)
- d_c Core Diameter of Bolt (Millimeter)
- δ_h Elongation of Bolt (Millimeter)
- E Modulus of Elasticity of Bolt (Newton per Square Millimeter)
- fs Factor of Safety of Bolted Joint
- **h** Height of Nut (Millimeter)
- **k** Combined Stiffness of Bolt (Newton per Millimeter)
- **k**_h' Stiffness of Bolt (Newton per Millimeter)
- I Total Thickness of Parts Held Together by Bolt (Millimeter)
- M_t Wrench Torque for Bolt Tightening (Newton Millimeter)
- n Number of Bolts in Bolted Joint
- P Imaginary Force on Bolt (Newton)
- P₁' Primary Shear Force on Bolt (Newton)
- P_b Resultant Load on Bolt (Newton)
- P_i Pre Load in Bolt (Newton)
- P_{tb} Tensile Force in Bolt (Newton)
- **S**_{SV} Shear Yield Strength of Bolt (Newton per Square Millimeter)
- S_{vt} Tensile Yield Strength of Bolt (Newton per Square Millimeter)
- δ_c Amount of Compression of Bolted Joint (Millimeter)
- σt_{max} Maximum Tensile Stress in Bolt (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Measurement: Length in Millimeter (mm)
 Length Unit Conversion
- Measurement: Force in Newton (N)
 Force Unit Conversion
- Measurement: Torque in Newton Millimeter (N*mm)
 Torque Unit Conversion
- Measurement: Stiffness Constant in Newton per Millimeter (N/mm)
 Stiffness Constant Unit Conversion
- Measurement: Stress in Newton per Square Millimeter (N/mm²)

 Stress Unit Conversion

Check other formula lists

- Joint Analysis Formulas
- Load and Strength
 Characteristics Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/29/2024 | 8:07:28 AM UTC

Please leave your feedback here...

