Stresses at Bends Formulas

List of 15 Stresses at Bends Formulas

Stresses at Bends

1) Angle of Bend given Buttress Resistance
$f \mathrm{fx} \theta_{\mathrm{b}}=2 \cdot a \sin \left(\frac{\mathrm{P}_{\mathrm{BR}}}{\left(2 \cdot \mathrm{~A}_{\mathrm{cs}}\right) \cdot\left(\left(\frac{\gamma_{\mathrm{water}} \cdot\left(\mathrm{V}_{\mathrm{w}}\right)^{2}}{[\mathrm{~g}]}\right)+\mathrm{P}_{\mathrm{wt}}\right)}\right)$
ex $36.0446^{\circ}=2 \cdot a \sin \left(\frac{1500 \mathrm{kN}}{\left(2 \cdot 13 \mathrm{~m}^{2}\right) \cdot\left(\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(13.47 \mathrm{~m} / \mathrm{s})^{2}}{[\mathrm{~g}]}\right)+4.97 \mathrm{kN} / \mathrm{m}^{2}\right)}\right)$
2) Angle of Bend given Head of Water and Buttress Resistance
$f \mathbf{f x} \theta_{\mathrm{b}}=2 \cdot a \sin \left(\frac{\mathrm{P}_{\mathrm{BR}}}{\left(2 \cdot \mathrm{~A}_{\mathrm{cs}}\right) \cdot\left(\left(\frac{\gamma_{\text {water }} \cdot\left(\mathrm{V}_{\mathrm{w}}\right)^{2}}{[\mathrm{~g}]}\right)+\left(\gamma_{\text {water }} \cdot \mathrm{H}_{\text {liquid }}\right)\right)}\right)$
$\operatorname{ex} 36.13629^{\circ}=2 \cdot a \sin \left(\frac{1500 \mathrm{kN}}{\left(2 \cdot 13 \mathrm{~m}^{2}\right) \cdot\left(\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(13.47 \mathrm{~m} / \mathrm{s})^{2}}{[\mathrm{~g}]}\right)+\left(9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 0.46 \mathrm{~m}\right)\right)}\right)$
3) Area of Section of Pipe given Buttress Resistance
$f \mathrm{fx} \mathrm{A}_{\mathrm{cs}}=\frac{\mathrm{P}_{\mathrm{BR}}}{(2) \cdot\left(\left(\frac{\gamma_{\mathrm{water}} \cdot\left(\mathrm{V}_{\mathrm{w}}\right)^{2}}{[\mathrm{~g}]}\right)+\mathrm{p}_{\mathrm{i}}\right) \cdot \sin \left(\frac{\theta_{\mathrm{b}}}{2}\right)}$
ex $9.573679 \mathrm{~m}^{2}=\frac{1500 \mathrm{kN}}{(2) \cdot\left(\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(13.47 \mathrm{~m} / \mathrm{s})^{2}}{[g]}\right)+72.01 \mathrm{kN} / \mathrm{m}^{2}\right) \cdot \sin \left(\frac{36.0^{\circ}}{2}\right)}$
4) Area of Section of Pipe given Head of Water
$f \mathbf{x} \mathbf{A}_{\mathrm{cs}}=\frac{\mathbf{T}_{\text {tkn }}}{\left(\gamma_{\text {water }} \cdot \mathrm{H}_{\text {liquid }}\right)+\left(\frac{\gamma_{\text {water }} \cdot\left(\mathrm{V}_{\mathrm{fw}}\right)^{2}}{[\mathrm{~g}]}\right)}$
ex $13.16246 \mathrm{~m}^{2}=\frac{482.7 \mathrm{kN}}{\left(9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 0.46 \mathrm{~m}\right)+\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(5.67 \mathrm{~m} / \mathrm{s})^{2}}{[\mathrm{~g}]}\right)}$
5) Area of Section of Pipe given Head of Water and Buttress Resistance
fx $\mathrm{A}_{\mathrm{cs}}=\frac{\mathrm{P}_{\mathrm{BR}}}{(2) \cdot\left(\left(\frac{\gamma_{\text {water }} \cdot\left(\mathrm{V}_{\mathrm{w}}\right)^{2}}{[\mathrm{~g}]}\right)+\left(\gamma_{\text {water }} \cdot \mathrm{H}_{\text {liquid }}\right)\right) \cdot \sin \left(\frac{\theta_{\mathrm{b}}}{2}\right)}$
ex $13.04758 \mathrm{~m}^{2}=\frac{1500 \mathrm{kN}}{(2) \cdot\left(\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(13.47 \mathrm{~m} / \mathrm{s})^{2}}{[\mathrm{~g}]}\right)+\left(9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 0.46 \mathrm{~m}\right)\right) \cdot \sin \left(\frac{36.0^{\circ}}{2}\right)}$
6) Area of Section of Pipe given Total Tension in Pipe
$f x \mathrm{~A}_{\mathrm{cs}}=\frac{\mathrm{T}_{\text {tkn }}}{\left(\mathrm{P}_{\mathrm{wt}}\right)+\left(\frac{\gamma_{\mathrm{water}} \cdot\left(\mathrm{V}_{\mathrm{fw}}\right)^{2}}{[\mathrm{~g}]}\right)}$
ex $13.00031 \mathrm{~m}^{2}=\frac{482.7 \mathrm{kN}}{\left(4.97 \mathrm{kN} / \mathrm{m}^{2}\right)+\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(5.67 \mathrm{~m} / \mathrm{s})^{2}}{[\mathrm{~g}]}\right)}$
7) Buttress Resistance using Angle of Bend
$f x P_{B R}=\left(2 \cdot \mathrm{~A}_{\mathrm{cs}}\right) \cdot\left(\left(\left(\gamma_{\text {water }} \cdot\left(\frac{\mathrm{V}_{\mathrm{fw}}^{2}}{[\mathrm{~g}]}\right)\right)+\mathrm{p}_{\mathrm{i}}\right) \cdot \sin \left(\frac{\theta_{\mathrm{b}}}{2}\right)\right)$
ex $836.9469 \mathrm{kN}=\left(2 \cdot 13 \mathrm{~m}^{2}\right) \cdot\left(\left(\left(9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot\left(\frac{(5.67 \mathrm{~m} / \mathrm{s})^{2}}{[\mathrm{~g}]}\right)\right)+72.01 \mathrm{kN} / \mathrm{m}^{2}\right) \cdot \sin \left(\frac{36.0^{\circ}}{2}\right)\right)$
8) Buttress Resistance using Head of Water
$\mathrm{fx} \mathrm{P}_{\mathrm{BR}}=\left(\left(2 \cdot \mathrm{~A}_{\mathrm{cs}}\right) \cdot\left(\left(\frac{\gamma_{\text {water }} \cdot\left(\mathrm{V}_{\mathrm{fw}}^{2}\right)}{[\mathrm{g}]}\right)+\left(\gamma_{\text {water }} \cdot \mathrm{H}\right)\right) \cdot \sin \left(\frac{\theta_{\mathrm{b}}}{2}\right)\right)$
$1440.655 \mathrm{kN}=\left(\left(2 \cdot 13 \mathrm{~m}^{2}\right) \cdot\left(\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot\left((5.67 \mathrm{~m} / \mathrm{s})^{2}\right)}{[\mathrm{g}]}\right)+\left(9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 15 \mathrm{~m}\right)\right) \cdot \sin \left(\frac{36.0^{\circ}}{2}\right)\right)$
9) Head of Water given Buttress Resistance
$\mathbf{f x} \mathrm{H}=\left(\frac{\left(\frac{\mathrm{P}_{\mathrm{BR}}}{\left(2 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \sin \left(\frac{\mathrm{\theta}_{\mathrm{b}}}{2}\right)\right.}-\left(\frac{\gamma_{\mathrm{water}} \cdot \mathrm{V}_{\mathrm{fw}}^{2}}{[\mathrm{~g}]}\right)\right)}{\gamma_{\text {water }}}\right)$
$\operatorname{ex} 15.75294 \mathrm{~m}=\left(\frac{\left(\frac{1500 \mathrm{kN}}{\left(2 \cdot 13 \mathrm{~m}^{2}\right) \cdot \sin \left(\frac{360^{\circ}}{2}\right)}-\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot(5.67 \mathrm{~m} / \mathrm{s})^{2}}{[\mathrm{~g}]}\right)\right)}{9.81 \mathrm{kN} / \mathrm{m}^{3}}\right)$
10) Head of Water given Total Tension in Pipe \leftrightarrows
$f x H_{\text {liquid }}=\frac{\mathrm{T}_{\mathrm{tkn}}-\left(\frac{\gamma_{\text {water }} \cdot \mathrm{A}_{\mathrm{cs}} \cdot\left(\mathrm{V}_{\mathrm{fw}}\right)^{2}}{[\mathrm{~g}]}\right)}{\gamma_{\text {water }} \cdot \mathrm{A}_{\mathrm{cs}}}$
ex $0.506716 \mathrm{~m}=\frac{482.7 \mathrm{kN}-\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 13 \mathrm{~m}^{2} \cdot(5.67 \mathrm{~m} / \mathrm{s})^{2}}{[\mathrm{~g}]}\right)}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 13 \mathrm{~m}^{2}}$
11) Internal Water Pressure using Buttress Resistance
$f \mathbf{x} \mathrm{p}_{\mathrm{i}}=\left(\left(\frac{\mathrm{P}_{\mathrm{BR}}}{2 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \sin \left(\frac{\theta_{\mathrm{b}}}{2}\right)}\right)-\left(\frac{\gamma_{\mathrm{water}} \cdot\left(\mathrm{V}_{\mathrm{fw}}^{2}\right)}{[\mathrm{g}]}\right)\right)$
$\operatorname{ex} 154.5363 \mathrm{kN} / \mathrm{m}^{2}=\left(\left(\frac{1500 \mathrm{kN}}{2 \cdot 13 \mathrm{~m}^{2} \cdot \sin \left(\frac{36.0^{\circ}}{2}\right)}\right)-\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot\left((5.67 \mathrm{~m} / \mathrm{s})^{2}\right)}{[\mathrm{g}]}\right)\right)$
12) Internal Water Pressure using Total Tension in Pipe
$\mathrm{fx} \mathrm{p}_{\mathrm{i}}=\left(\frac{\mathrm{T}_{\mathrm{mn}}}{\mathrm{A}_{\mathrm{cs}}}\right)-\left(\frac{\gamma_{\text {water }} \cdot\left(\mathrm{V}_{\mathrm{fw}}^{2}\right)}{[\mathrm{g}]}\right)$
ex $72.4555 \mathrm{kN} / \mathrm{m}^{2}=\left(\frac{1.36 \mathrm{MN}}{13 \mathrm{~m}^{2}}\right)-\left(\frac{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot\left((5.67 \mathrm{~m} / \mathrm{s})^{2}\right)}{[\mathrm{g}]}\right)$
13) Velocity of Flow of Water given Buttress Resistance
$f_{*} \mathrm{~V}_{\mathrm{fw}}=\sqrt{\left(\frac{\mathrm{P}_{\mathrm{BR}}}{\left(2 \cdot \mathrm{~A}_{\mathrm{cs}}\right) \cdot \sin \left(\frac{\theta_{\mathrm{b}}}{2}\right)}-\mathrm{p}_{\mathrm{i}}\right) \cdot\left(\frac{[\mathrm{g}]}{\gamma_{\text {water }}}\right)}$
ex $10.70734 \mathrm{~m} / \mathrm{s}=\sqrt{\left(\frac{1500 \mathrm{kN}}{\left(2 \cdot 13 \mathrm{~m}^{2}\right) \cdot \sin \left(\frac{36.0^{\circ}}{2}\right)}-72.01 \mathrm{kN} / \mathrm{m}^{2}\right) \cdot\left(\frac{[\mathrm{g}]}{9.81 \mathrm{kN} / \mathrm{m}^{3}}\right)}$
14) Velocity of Flow of Water given Total Tension in Pipe
$f \mathbf{x} \mathrm{~V}_{\mathrm{fw}}=\sqrt{\left(\mathrm{T}_{\mathrm{tkn}}-\left(\mathrm{P}_{\mathrm{wt}} \cdot \mathrm{A}_{\mathrm{cs}}\right)\right) \cdot\left(\frac{[\mathrm{g}]}{\gamma_{\text {water }} \cdot \mathrm{A}_{\mathrm{cs}}}\right)}$
ex $5.670078 \mathrm{~m} / \mathrm{s}=\sqrt{\left(482.7 \mathrm{kN}-\left(4.97 \mathrm{kN} / \mathrm{m}^{2} \cdot 13 \mathrm{~m}^{2}\right)\right) \cdot\left(\frac{[\mathrm{g}]}{9.81 \mathrm{kN} / \mathrm{m}^{3} \cdot 13 \mathrm{~m}^{2}}\right)}$
15) Velocity of Flow of Water with known Head of Water and Buttress Resistance
fx $\mathrm{V}_{\mathrm{fw}}=\left(\left(\frac{[\mathrm{g}]}{\gamma_{\text {water }}}\right) \cdot\left(\left(\frac{\mathrm{P}_{\mathrm{BR}}}{2 \cdot \mathrm{~A}_{\mathrm{cs}} \cdot \sin \left(\frac{\theta_{\mathrm{b}}}{2}\right)}-\mathrm{H} \cdot \gamma_{\text {water }}\right)\right)\right)$
ex $39.53272 \mathrm{~m} / \mathrm{s}=\left(\left(\frac{[\mathrm{g}]}{9.81 \mathrm{kN} / \mathrm{m}^{3}}\right) \cdot\left(\left(\frac{1500 \mathrm{kN}}{2 \cdot 13 \mathrm{~m}^{2} \cdot \sin \left(\frac{36.0^{\circ}}{2}\right)}-15 \mathrm{~m} \cdot 9.81 \mathrm{kN} / \mathrm{m}^{3}\right)\right)\right)$

Variables Used

- $\mathbf{A}_{\mathbf{c s}}$ Cross-Sectional Area (Square Meter)
- H Head of the Liquid (Meter)
- $\mathrm{H}_{\text {liquid }}$ Head of Liquid in Pipe (Meter)
- $\mathbf{P}_{\mathbf{B R}}$ Buttress Resistance in Pipe (Kilonewton)
- $\mathbf{p}_{\mathbf{i}}$ Internal Water Pressure in Pipes (Kilonewton per Square Meter)
- $\mathbf{P}_{\mathbf{w t}}$ Water Pressure in KN per Square Meter (Kilonewton per Square Meter)
- $\mathbf{T}_{\mathbf{m n}}$ Total Tension of Pipe in MN (Meganewton)
- $\mathbf{T}_{\text {tkn }}$ Total Tension in Pipe in KN (Kilonewton)
- \mathbf{V}_{fw} Velocity of Flowing Water (Meter per Second)
- $\mathbf{V}_{\mathbf{w}}$ Flow Velocity of Fluid (Meter per Second)
- $Y_{\text {water }}$ Unit Weight of Water in KN per Cubic Meter (Kilonewton per Cubic Meter)
- $\boldsymbol{\theta}_{\mathrm{b}}$ Angle of Bend in Environmental Engi. (Degree)

Constants, Functions, Measurements used

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Function: asin, asin(Number)

The inverse sine function, is a trigonometric function that takes a ratio of two sides of a right triangle and outputs the angle opposite the side with the given ratio.

- Function: $\boldsymbol{\operatorname { s i n }}, \mathbf{s i n}($ Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Pressure in Kilonewton per Square Meter (kN/m²)

Pressure Unit Conversion

- Measurement: Speed in Meter per Second (m / s)

Speed Unit Conversion

- Measurement: Force in Kilonewton (kN), Meganewton (MN)

Force Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

- Measurement: Specific Weight in Kilonewton per Cubic Meter (kN/m³)

Specific Weight Unit Conversion

Check other formula lists

- Internal Water Pressure Formulas
- Stresses at Bends Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

