
calculatoratoz.com

Current Electricity Formulas

Examples!
Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 30 Current Electricity Formulas

Current Electricity

Basics of Current Electricity ©

1) Current Density given Electric Current and Area
$\mathrm{fx} \mathrm{J}=\frac{\mathrm{I}}{\mathrm{A}_{\text {cond }}}$
Open Calculator
ex $0.402299 \mathrm{~A} / \mathrm{mm}^{2}=\frac{2.1 \mathrm{~A}}{5.22 \mathrm{~mm}^{2}}$
2) Current Density given Resistivity

ex $35.29412 \mathrm{~A} / \mathrm{mm}^{2}=\frac{600 \mathrm{~V} / \mathrm{m}}{0.017 \Omega^{*} \mathrm{~mm}}$
3) Drift Speed
$\mathrm{fx}_{\mathrm{x}} \mathrm{V}_{\mathrm{d}}=\frac{\mathrm{E} \cdot \tau \cdot[\text { Charge-e }]}{2 \cdot[\text { Mass-e }]}$
ex $2.6 \mathrm{E}^{\wedge} 15 \mathrm{~mm} / \mathrm{s}=\frac{600 \mathrm{~V} / \mathrm{m} \cdot 0.05 \mathrm{~s} \cdot[\text { Charge-e }]}{2 \cdot[\text { Mass-e }]}$
4) Drift Speed given Cross-Sectional Area
fx $\mathrm{V}_{\mathrm{d}}=\frac{\mathrm{I}}{\mathrm{e}^{-} \cdot[\text { Charge-e }] \cdot \mathrm{A}}$
ex $1.9 \mathrm{E}^{\wedge} 26 \mathrm{~mm} / \mathrm{s}=\frac{2.1 \mathrm{~A}}{5 \cdot[\text { Charge-e }] \cdot 14 \mathrm{~mm}^{2}}$
5) Electric Current given Charge and Time
$\mathrm{fx} I=\frac{\mathrm{q}}{\mathrm{T}_{\mathrm{Total}}}$
Open Calculator
ex $0.00375 \mathrm{~A}=\frac{0.3 \mathrm{C}}{80 \mathrm{~s}}$
6) Electric Current given Drift Velocity
$\mathrm{fx}_{\mathrm{x}} \mathrm{I}=\mathrm{n} \cdot[$ Charge-e $] \cdot \mathrm{A} \cdot \mathrm{V}_{\mathrm{d}}$
ex $1.6 \mathrm{E}^{\wedge}-27 \mathrm{~A}=7 \cdot[$ Charge-e $] \cdot 14 \mathrm{~mm}^{2} \cdot 0.1 \mathrm{~mm} / \mathrm{s}$
7) Electric Field
$f \times E=\frac{\Delta V}{l}$
Open Calculator
ex $20 \mathrm{~V} / \mathrm{m}=\frac{18 \mathrm{~V}}{0.9 \mathrm{~m}}$
8) Electromotive Force when Battery is Charging
$\mathrm{fx} \mathrm{V}_{\text {electromotive }}=\varepsilon+\mathrm{I} \cdot \mathrm{R}$
ex $33.3 \mathrm{~V}=1.8 \mathrm{~V}+2.1 \mathrm{~A} \cdot 15 \Omega$
9) Electromotive Force when Battery is Discharging
$f \times V_{\text {electromotive }}=\varepsilon-I \cdot R$
Open Calculator
$\epsilon \mathrm{ex}-29.7 \mathrm{~V}=1.8 \mathrm{~V}-2.1 \mathrm{~A} \cdot 15 \Omega$

Energy and Power

10) Heat Energy given Electric Potential Difference and Electric Current
fx $\mathrm{Q}=\Delta \mathrm{V} \cdot \mathrm{I} \cdot \mathrm{T}_{\text {Total }}$
Open Calculator
ex $3024 \mathrm{~W}=18 \mathrm{~V} \cdot 2.1 \mathrm{~A} \cdot 80 \mathrm{~s}$
11) Heat Energy given Electric Potential Difference and Resistance
$f \times \mathrm{Q}=\Delta \mathrm{V}^{2} \cdot \frac{\mathrm{~T}_{\text {Total }}}{\mathrm{R}}$
ex $1728 \mathrm{~W}=(18 \mathrm{~V})^{2} \cdot \frac{80 \mathrm{~s}}{15 \Omega}$
12) Heat Generated through Resistance
$\mathrm{fx}_{\mathrm{x}} \mathrm{Q}=\mathrm{I}^{2} \cdot \mathrm{R} \cdot \mathrm{T}_{\text {Total }}$

Open Calculator

ex $5292 \mathrm{~W}=(2.1 \mathrm{~A})^{2} \cdot 15 \Omega \cdot 80 \mathrm{~s}$
13) Power given Electric Current and Resistance
$f \mathrm{x}=\mathrm{I}^{2} \cdot \mathrm{R}$
Open Calculator
ex $17.23857 \mathrm{~W}=(.9577 \mathrm{~A})^{2} \cdot 18.7950 \Omega$
14) Power given Electric Potential Difference and Electric Current
$f_{x} P=\Delta V \cdot I$
Open Calculator
ex $17 \mathrm{~W}=17.75086 \mathrm{~V} \cdot .9577 \mathrm{~A}$
15) Power given Electric Potential Difference and Resistance
$f \mathrm{x}=\frac{\Delta V^{2}}{R}$
Open Calculator
ex $16.76473 \mathrm{~W}=\frac{(17.75086 \mathrm{~V})^{2}}{18.7950 \Omega}$

Resistance

16) Equivalent Resistance in Parallel
$f \times R_{\mathrm{eq}}=\left(\frac{1}{\mathrm{R}}+\frac{1}{\Omega}\right)^{-1}$
Open Calculator
ex $11.53846 \Omega=\left(\frac{1}{15 \Omega}+\frac{1}{50 \Omega}\right)^{-1}$
17) Equivalent Resistance in Series
$\mathbf{f x} R_{\text {eq }}=R+\Omega$
Open Calculator 〔
ex $65 \Omega=15 \Omega+50 \Omega$
18) Internal Resistance using Potentiometer
$\mathrm{fx} \mathrm{R}=\frac{\mathrm{L}-\mathrm{l}_{2}}{\mathrm{l}_{2}} \cdot \Omega$
Open Calculator
ex $12.5 \Omega=\frac{1500 \mathrm{~mm}-1200 \mathrm{~mm}}{1200 \mathrm{~mm}} \cdot 50 \Omega$
19) Resistance
$f \mathbf{f x}=\frac{\rho \cdot l}{\mathrm{~A}}$
ex $1.092857 \Omega=\frac{0.017 \Omega^{*} \mathrm{~mm} \cdot 0.9 \mathrm{~m}}{14 \mathrm{~mm}^{2}}$

20) Resistance of Wire

$f \mathrm{x} R=\rho \cdot \frac{\mathrm{L}}{\mathrm{A}}$
ex $1.821429 \Omega=0.017 \Omega * \mathrm{~mm} \cdot \frac{1500 \mathrm{~mm}}{14 \mathrm{~mm}^{2}}$
21) Resistance on Stretching of Wire
$\mathrm{fx} R=\frac{\Omega \cdot \mathrm{L}^{2}}{\left(\mathrm{l}_{2}\right)^{2}}$

$$
\mathrm{ex} 78.125 \Omega=\frac{50 \Omega \cdot(1500 \mathrm{~mm})^{2}}{(1200 \mathrm{~mm})^{2}}
$$

22) Resistivity of Material
$f \times \rho=\frac{2 \cdot[\text { Mass-e }]}{\mathrm{n} \cdot[\text { Charge-e }]^{2} \cdot \tau}$

$$
\mathrm{ex} 2 \mathrm{E}^{\wedge} 11 \Omega^{*} \mathrm{~mm}=\frac{2 \cdot[\text { Mass-e }]}{7 \cdot[\text { Charge-e }]^{2} \cdot 0.05 \mathrm{~s}}
$$

23) Temperature Dependence of Resistance
$\mathrm{fx}_{\mathrm{x}} \mathrm{R}=\mathrm{R}_{\mathrm{ref}} \cdot(1+\alpha \cdot \Delta \mathrm{T})$
ex $1602.5 \Omega=2.5 \Omega \cdot\left(1+16^{\circ} \mathrm{C}^{-1} \cdot 40 \mathrm{~K}\right)$

Voltage and Current Measuring Instruments ©

24) Current in Potentiometer
$f x I=\frac{x \cdot L}{R}$
ex $114 \mathrm{~A}=\frac{1140 \mathrm{~V} / \mathrm{m} \cdot 1500 \mathrm{~mm}}{15 \Omega}$
25) EMF of Unknown Cell using Potentiometer
$f \mathrm{fx} \varepsilon=\frac{\varepsilon, \cdot \mathrm{L}}{\mathrm{l}_{2}}$
Open Calculator
ex $7.5 \mathrm{~V}=\frac{6 \mathrm{~V} \cdot 1500 \mathrm{~mm}}{1200 \mathrm{~mm}}$
26) Metre Bridge
$\mathrm{fx} \Omega=\mathrm{R} \cdot \frac{100-L}{L}$
Open Calculator
ex $985 \Omega=15 \Omega \cdot \frac{100-1500 \mathrm{~mm}}{1500 \mathrm{~mm}}$
27) Ohm's Law 区
$f \mathrm{fx}=\mathrm{I} \cdot \mathrm{R}$

[^0]28) Potential Difference through Voltmeter

$\mathrm{fx} \Delta \mathrm{V}=\mathrm{I}_{\mathrm{G}} \cdot \mathrm{R}+\mathrm{I}_{\mathrm{G}} \cdot \mathrm{R}_{\mathrm{G}}$

ex $38.25 \mathrm{~V}=1.5 \mathrm{~A} \cdot 15 \Omega+1.5 \mathrm{~A} \cdot 10.5 \Omega$
29) Potential Gradient through Potentiometer
$f \mathrm{x} x=\frac{\Delta \mathrm{V}-\mathrm{V}_{\mathrm{B}}}{\mathrm{L}}$
Open Calculator
ex $0.666667 \mathrm{~V} / \mathrm{m}=\frac{18 \mathrm{~V}-17 \mathrm{~V}}{1500 \mathrm{~mm}}$
30) Shunt in Ammeter
$f \mathrm{fx} \mathrm{R}_{\mathrm{sh}}=\mathrm{R}_{\mathrm{G}} \cdot \frac{I_{\mathrm{G}}}{\mathrm{I}-\mathrm{I}_{\mathrm{G}}}$
ex $26.25 \Omega=10.5 \Omega \cdot \frac{1.5 \mathrm{~A}}{2.1 \mathrm{~A}-1.5 \mathrm{~A}}$

Variables Used

- ΔT Change in Temperature (Kelvin)
- A Cross-Sectional Area (Square Millimeter)
- $\mathbf{A}_{\text {cond }}$ Area of Conductor (Square Millimeter)
- E Electric Field (Volt per Meter)
- \mathbf{e}^{-}Number of Electrons
- I Electric Current (Ampere)
- I Electric Current (Ampere)
- $\mathbf{I}_{\mathbf{G}}$ Electric Current through Galvanometer (Ampere)
- J Electric Current Density (Ampere per Square Millimeter)
- I Length of Conductor (Meter)
- L Length (Millimeter)
- $\mathbf{I}_{\mathbf{2}}$ Final Length (Millimeter)
- n Number of Free Charge Particles per Unit Volume
- P Power (Watt)
- q Charge (Coulomb)
- Q Heat Rate (Watt)
- R Resistance (Ohm)
- R Resistance (Ohm)
- $\mathbf{R}_{\mathbf{e q}}$ Equivalent Resistance (Ohm)
- $\mathbf{R}_{\mathbf{G}}$ Resistance through Galvanometer (Ohm)
- $\mathbf{R}_{\text {ref }}$ Resistance at Reference Temperature (Ohm)
- $\mathbf{R}_{\mathbf{s h}}$ Shunt (Ohm)
- TTotal Total Time Taken (Second)
- V Voltage (Volt)
- $\mathbf{V}_{\mathbf{B}}$ Electric Potential Diff through other Terminal (Volt)
- $\mathbf{V}_{\mathbf{d}}$ Drift Speed (Millimeter per Second)
- $\mathrm{V}_{\text {electromotive }}$ Electromotive Voltage (Volt)
- X Potential Gradient (Volt per Meter)
- $\boldsymbol{\alpha}$ Temperature Coefficient of Resistance (Per Degree Celsius)
- $\Delta \mathbf{V}$ Electric Potential Difference (Volt)
- $\Delta \mathbf{V}$ Electric Potential Difference (Volt)
- ε Electromotive Force (Volt)
- ε^{\prime} EMF of Unknown Cell using Potentiometer (Volt)
- $\boldsymbol{\rho}$ Resistivity (Ohm Millimeter)
- $\mathbf{\Omega}$ Final Resistance (Ohm)
- τ Relaxation time (Second)

Constants, Functions, Measurements used

- Constant: [Charge-e], 1.60217662E-19

Charge of electron

- Constant: [Mass-e], 9.10938356E-31

Mass of electron

- Measurement: Length in Meter (m), Millimeter (mm)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Electric Current in Ampere (A)

Electric Current Unit Conversion

- Measurement: Temperature in Kelvin (K)

Temperature Unit Conversion

- Measurement: Area in Square Millimeter (mm^{2})

Area Unit Conversion

- Measurement: Speed in Millimeter per Second (mm/s)

Speed Unit Conversion

- Measurement: Electric Charge in Coulomb (C)

Electric Charge Unit Conversion

- Measurement: Power in Watt (W)

Power Unit Conversion

- Measurement: Electric Resistance in Ohm (Ω)

Electric Resistance Unit Conversion

- Measurement: Surface Current Density in Ampere per Square Millimeter ($\mathrm{A} / \mathrm{mm}^{2}$)
Surface Current Density Unit Conversion
- Measurement: Electric Field Strength in Volt per Meter (V/m)

Electric Field Strength Unit Conversion

- Measurement: Electric Potential in Volt (V)

Electric Potential Unit Conversion

- Measurement: Electric Resistivity in Ohm Millimeter ($\Omega^{*} \mathrm{~mm}$) Electric Resistivity Unit Conversion
- Measurement: Temperature Coefficient of Resistance in Per Degree Celsius (${ }^{\circ} \mathrm{C}^{-1}$)
Temperature Coefficient of Resistance Unit Conversion

Check other formula lists

- Current Electricity Formulas
- Elasticity \& Simple Harmonic Motion(SHM) Formulas
- Gravitation Formulas
- Microscopes and Telescopes Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

[^0]: ex $31.5 \mathrm{~V}=2.1 \mathrm{~A} \cdot 15 \Omega$

