
calculatoratoz.com

unitsconverters.com

Return Period and Encounter Probability Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 9 Return Period and Encounter Probability Formulas

Return Period and Encounter Probability ©

1) Cumulative Probability of Design Significant Wave Height given Return Period
$f x \mathrm{PH}_{\mathrm{s}}=-\left(\left(\frac{\mathrm{t}}{\mathrm{T}_{\mathrm{r}}}\right)-1\right)$
Open Calculator
ex $0.4=-\left(\left(\frac{30}{50}\right)-1\right)$
2) Encounter Probability
$f \times P_{e}=1-\left(1-\left(\frac{t}{T_{r}}\right)\right)^{L}$
Open Calculator
ex $0.941604=1-\left(1-\left(\frac{30}{50}\right)\right)^{3.1}$
3) Mean Value of Maximum Monthly Wind Speeds for Wind Speed with ryear Return Period
fx
Open Calculator

$$
\mathrm{U}_{\mathrm{m}}=\mathrm{U}_{\mathrm{r}}-\left(0.78 \cdot \sigma_{\mathrm{m}} \cdot\left(\ln \left(12 \cdot \mathrm{~T}_{\mathrm{r}}\right)-0.577\right)\right)
$$

ex $17.52871 \mathrm{~m} / \mathrm{s}=32.6 \mathrm{~m} / \mathrm{s}-(0.78 \cdot 3.32 \cdot(\ln (12 \cdot 50)-0.577))$
4) Return Period given Cumulative Probability $\sqrt{\square}$
$\mathrm{fx} \mathrm{T}_{\mathrm{r}}=\frac{\mathrm{t}}{1-\mathrm{PH}_{\mathrm{s}}}$
Open Calculator
ex $50=\frac{30}{1-0.4}$
5) Significant Wave Height for Free Long Waves
$f \times \mathrm{H}_{\mathrm{sf}}=\frac{\mathrm{K} \cdot \mathrm{H}_{\mathrm{s}}^{1.11} \cdot \mathrm{~T}_{\mathrm{p}}^{1.25}}{\mathrm{D}^{0.25}}$
Open Calculator
ex $16.57771 \mathrm{~m}=\frac{0.0041 \cdot(65 \mathrm{~m})^{1.11} \cdot(31 \mathrm{~s})^{1.25}}{(12 \mathrm{~m})^{0.25}}$
6) Standard Deviation of Maximum Monthly Wind Speeds given Wind Speed with r-year Return Period
$f \mathrm{f} \sigma_{\mathrm{m}}=\frac{\mathrm{U}_{\mathrm{r}}-\mathrm{U}_{\mathrm{m}}}{0.78 \cdot\left(\ln \left(12 \cdot \mathrm{~T}_{\mathrm{r}}\right)-0.577\right)}$
$\mathrm{ex} 3.326324=\frac{32.6 \mathrm{~m} / \mathrm{s}-17.50 \mathrm{~m} / \mathrm{s}}{0.78 \cdot(\ln (12 \cdot 50)-0.577)}$

Open Calculator
7) Time Interval Associated with Each Data Point given Return Period
$f \times t=T_{r} \cdot\left(1-\mathrm{PH}_{s}\right)$
Open Calculator
ex $30=50 \cdot(1-0.4)$
8) Velocity at Surface given Volume Flow Rate Per Unit of Ocean Width
$f_{\mathrm{x}} \mathrm{V}_{\mathrm{s}}=\frac{\mathrm{q}_{\mathrm{x}} \cdot \pi \cdot \sqrt{2}}{\mathrm{D}_{\mathrm{F}}}$
Open Calculator
ex $0.499824 \mathrm{~m} / \mathrm{s}=\frac{13.5 \mathrm{~m}^{3} / \mathrm{s} \cdot \pi \cdot \sqrt{2}}{120 \mathrm{~m}}$
9) Wind Speed with r-year Return Period
$\mathrm{fx}_{\mathrm{x}} \mathrm{U}_{\mathrm{r}}=\mathrm{U}_{\mathrm{m}}+0.78 \cdot \sigma_{\mathrm{m}} \cdot\left(\ln \left(12 \cdot \mathrm{~T}_{\mathrm{r}}\right)-0.577\right) \quad$ Open Calculator ©
ex $32.57129 \mathrm{~m} / \mathrm{s}=17.50 \mathrm{~m} / \mathrm{s}+0.78 \cdot 3.32 \cdot(\ln (12 \cdot 50)-0.577)$

Variables Used

- D Water Depth (Meter)
- $\mathbf{D}_{\mathbf{F}}$ Depth of Frictional Influence (Meter)
- $\mathbf{H}_{\mathbf{s}}$ Significant Wave Height (Meter)
- $\mathrm{H}_{\mathbf{s f}}$ Significant Wave Height for Free Waves (Meter)
- K Constant for Free Long Waves
- L Desired Time Period
- $\mathbf{P e}_{\mathbf{e}}$ Encounter Probability
- $\mathrm{PH}_{\mathbf{S}}$ Cumulative Probability
- $\mathbf{q}_{\mathbf{x}}$ Volume Flow Rates per unit of Ocean Width (Cubic Meter per Second)
- t Time Interval associated with each Data Point
- $\mathbf{T}_{\mathbf{p}}$ Design Wave Period (Second)
- $\mathbf{T}_{\mathbf{r}}$ Return Period of Wind
- $\mathbf{U}_{\mathbf{m}}$ Mean Value of Maximum Monthly Wind Speeds (Meter per Second)
- $\mathbf{U}_{\mathbf{r}}$ Wind Speed with r Year Return Period (Meter per Second)
- $\mathbf{V}_{\mathbf{s}}$ Velocity at the Surface (Meter per Second)
- σ_{m} Standard Deviation of Maximum Monthly Wind Speeds

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Function: In, In(Number)

The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.

- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion

Check other formula lists

- Return Period and Encounter Probability Formulas Ξ

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

