进

(1)

unitsconverters.com

Capsule Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 16 Capsule Formulas

Capsule ed

Cylinder Height of Capsule ©

1) Cylinder Height of Capsule
$\mathrm{f} \times \mathrm{h}_{\text {Cylinder }}=1-\left(2 \cdot \mathrm{r}_{\text {Sphere }}\right)$
Open Calculator
$\mathrm{ex} 10 \mathrm{~m}=20 \mathrm{~m}-(2 \cdot 5 \mathrm{~m})$
2) Cylinder Height of Capsule given Sphere Radius and Surface Area

$$
\begin{aligned}
& f \times \mathrm{h}_{\text {Cylinder }}=\frac{\mathrm{TSA}}{2 \cdot \pi \cdot \mathrm{r}_{\text {Sphere }}}-\left(2 \cdot \mathrm{r}_{\text {Sphere }}\right) \\
& \mathbf{e x} 10.05352 \mathrm{~m}=\frac{630 \mathrm{~m}^{2}}{2 \cdot \pi \cdot 5 \mathrm{~m}}-(2 \cdot 5 \mathrm{~m})
\end{aligned}
$$

3) Cylinder Height of Capsule given Sphere Radius and Volume
$f \times \mathrm{h}_{\text {Cylinder }}=\frac{\mathrm{V}}{\pi \cdot \mathrm{r}_{\text {Sphere }}^{2}}-\frac{4 \cdot \mathrm{r}_{\text {Sphere }}}{3}$
Open Calculator
ex $10.01277 \mathrm{~m}=\frac{1310 \mathrm{~m}^{3}}{\pi \cdot(5 \mathrm{~m})^{2}}-\frac{4 \cdot 5 \mathrm{~m}}{3}$
4) Cylinder Height of Capsule given Surface Area and Length
$f_{x} \mathrm{~h}_{\text {Cylinder }}=1-\frac{\mathrm{TSA}}{\pi \cdot 1}$
Open Calculator
ex $9.973239 \mathrm{~m}=20 \mathrm{~m}-\frac{630 \mathrm{~m}^{2}}{\pi \cdot 20 \mathrm{~m}}$

Length of Capsule ©

5) Length of Capsule
$\mathrm{f}_{\mathrm{x}} \mathrm{l}=\mathrm{h}_{\text {Cylinder }}+\left(2 \cdot \mathrm{r}_{\text {Sphere }}\right)$
Open Calculator
$\mathrm{ex} 20 \mathrm{~m}=10 \mathrm{~m}+(2 \cdot 5 \mathrm{~m})$
6) Length of Capsule given Surface Area and Sphere Radius
$\mathrm{fx}=\frac{\mathrm{TSA}}{2 \cdot \pi \cdot \mathrm{r}_{\text {Sphere }}}$
ex $20.05352 \mathrm{~m}=\frac{630 \mathrm{~m}^{2}}{2 \cdot \pi \cdot 5 \mathrm{~m}}$
7) Length of Capsule given Volume and Sphere Radius
$\mathrm{fx}=\frac{\mathrm{V}}{\pi \cdot \mathrm{r}_{\text {Sphere }}^{2}}+\frac{2 \cdot \mathrm{r}_{\text {Sphere }}}{3}$
ex $20.01277 \mathrm{~m}=\frac{1310 \mathrm{~m}^{3}}{\pi \cdot(5 \mathrm{~m})^{2}}+\frac{2 \cdot 5 \mathrm{~m}}{3}$

Sphere Radius of Capsule ©

8) Sphere Radius of Capsule \subseteq
$\mathrm{fx} \mathrm{r}_{\text {Sphere }}=\frac{\mathrm{l}-\mathrm{h}_{\text {Cylinder }}}{2}$
Open Calculator
ex $5 \mathrm{~m}=\frac{20 \mathrm{~m}-10 \mathrm{~m}}{2}$
9) Sphere Radius of Capsule given Surface Area and Length
$\mathrm{fx} \mathrm{r}_{\text {Sphere }}=\frac{\mathrm{TSA}}{2 \cdot \pi \cdot 1}$
ex $5.013381 \mathrm{~m}=\frac{630 \mathrm{~m}^{2}}{2 \cdot \pi \cdot 20 \mathrm{~m}}$

Surface Area of Capsule

Total Surface Area of Capsule

10) Surface Area of Capsule
$\mathrm{TSA}=\left(2 \cdot \pi \cdot \mathrm{r}_{\text {Sphere }}\right) \cdot\left(\left(2 \cdot \mathrm{r}_{\text {Sphere }}\right)+\mathrm{h}_{\text {Cylinder }}\right)$
ex $628.3185 \mathrm{~m}^{2}=(2 \cdot \pi \cdot 5 \mathrm{~m}) \cdot((2 \cdot 5 \mathrm{~m})+10 \mathrm{~m})$
11) Surface Area of Capsule given Length and Cylinder Height
fx TSA $=\pi \cdot \mathrm{l} \cdot\left(\mathrm{l}-\mathrm{h}_{\text {Cylinder }}\right)$
ex $628.3185 \mathrm{~m}^{2}=\pi \cdot 20 \mathrm{~m} \cdot(20 \mathrm{~m}-10 \mathrm{~m})$
12) Surface Area of Capsule given Length and Sphere Radius
fx TSA $=2 \cdot \pi \cdot \mathrm{l} \cdot \mathrm{r}_{\text {Sphere }}$
ex $628.3185 \mathrm{~m}^{2}=2 \cdot \pi \cdot 20 \mathrm{~m} \cdot 5 \mathrm{~m}$
Surface to Volume Ratio of Capsule ©
13) Surface to Volume Ratio of Capsule

$$
f \mathbf{f} \mathrm{R}_{\mathrm{A} / \mathrm{V}}=\frac{2 \cdot\left(\left(2 \cdot \mathrm{r}_{\text {Sphere }}\right)+\mathrm{h}_{\text {Cylinder }}\right)}{\mathrm{r}_{\text {Sphere }} \cdot\left(\frac{4 \cdot \mathrm{r}_{\text {Sphere }}}{3}+\mathrm{h}_{\text {Cylinder }}\right)}
$$

ex $0.48 \mathrm{~m}^{-1}=\frac{2 \cdot((2 \cdot 5 \mathrm{~m})+10 \mathrm{~m})}{5 \mathrm{~m} \cdot\left(\frac{4 \cdot 5 \mathrm{~m}}{3}+10 \mathrm{~m}\right)}$

Volume of Capsule ©

14) Volume of Capsule
$\mathrm{fx} \mathrm{V}=\pi \cdot \mathrm{r}_{\text {Sphere }}^{2} \cdot\left(\frac{4 \cdot \mathrm{r}_{\text {Sphere }}}{3}+\mathrm{h}_{\text {Cylinder }}\right)$
Open Calculator
ex $1308.997 \mathrm{~m}^{3}=\pi \cdot(5 \mathrm{~m})^{2} \cdot\left(\frac{4 \cdot 5 \mathrm{~m}}{3}+10 \mathrm{~m}\right)$
15) Volume of Capsule given Cylinder Height and Length

fx

Open Calculator
$\mathrm{V}=\pi \cdot\left(\frac{\mathrm{l}-\mathrm{h}_{\text {Cylinder }}}{2}\right)^{2} \cdot\left(\frac{2 \cdot\left(\mathrm{l}-\mathrm{h}_{\text {Cylinder }}\right)}{3}+\mathrm{h}_{\text {Cylinder }}\right)$
ex $1308.997 \mathrm{~m}^{3}=\pi \cdot\left(\frac{20 \mathrm{~m}-10 \mathrm{~m}}{2}\right)^{2} \cdot\left(\frac{2 \cdot(20 \mathrm{~m}-10 \mathrm{~m})}{3}+10 \mathrm{~m}\right)$
16) Volume of Capsule given Sphere Radius and Length
$\mathrm{fx}_{\mathrm{x}}^{\mathrm{V}=\pi \cdot \mathrm{r}_{\text {Sphere }}^{2} \cdot\left(1-\frac{2 \cdot \mathrm{r}_{\text {Sphere }}}{3}\right)}$
ex $1308.997 \mathrm{~m}^{3}=\pi \cdot(5 \mathrm{~m})^{2} \cdot\left(20 \mathrm{~m}-\frac{2 \cdot 5 \mathrm{~m}}{3}\right)$

Variables Used

- $\mathbf{h}_{\text {Cylinder }}$ Cylinder Height of Capsule (Meter)
- I Length of Capsule (Meter)
- $\mathbf{R}_{\mathbf{A} / \mathbf{V}}$ Surface to Volume Ratio of Capsule (1 per Meter)
- ${ }^{\text {PSphere }}$ Sphere Radius of Capsule (Meter)
- TSA Total Surface Area of Capsule (Square Meter)
- V Volume of Capsule (Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Volume in Cubic Meter (m^{3})

Volume Unit Conversion

- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Reciprocal Length in 1 per Meter (m^{-1})

Reciprocal Length Unit Conversion

Check other formula lists

－Anticube Formulas
－Antiprism Formulas
－Barrel Formulas 〔
－Bent Cuboid Formulas
－Bicone Formulas
－Capsule Formulas 工
－Circular Hyperboloid Formulas
－Cuboctahedron Formulas
－Cut Cylinder Formulas
－Cut Cylindrical Shell Formulas Ingot Formulas
－Cylinder Formulas
－Cylindrical Shell Formulas
－Diagonally Halved Cylinder Formulas 【
－Disphenoid Formulas
－Double Calotte Formulas
－Double Point Formulas
－Ellipsoid Formulas
－Elliptic Cylinder Formulas
－Elongated Dodecahedron Formulas
－Flat End Cylinder Formulas
－Frustum of Cone Formulas
－Great Dodecahedron Formulas Sharp Bent Cylinder Formulas
－Great Icosahedron Formulas
－Great Stellated Dodecahedron Formulas
－Half Cylinder Formulas
－Half Tetrahedron Formulas
－Hemisphere Formulas $\boxed{\square}$
－Hollow Cuboid Formulas
－Hollow Cylinder Formulas
－Hollow Frustum Formulas
〔．Hollow Hemisphere Formulas
－Hollow Pyramid Formulas
－Hollow Sphere Formulas
－Obelisk Formulas
－Oblique Cylinder Formulas
－Oblique Prism Formulas
－Obtuse Edged Cuboid Formulas
－Oloid Formulas
－Paraboloid Formulas
－Parallelepiped Formulas
－Ramp Formulas
－Regular Bipyramid Formulas
－Rhombohedron Formulas
－Right Wedge Formulas
－Semi Ellipsoid Formulas
－Skewed Three Edged Prism
Formulas

- Small Stellated Dodecahedron Formulas
- Solid of Revolution Formulas \mathcal{G} - Stellated Octahedron
- Sphere Formulas
- Spherical Cap Formulas
- Spherical Corner Formulas
- Spherical Ring Formulas
- Spherical Sector Formulas
- Spherical Segment Formulas • Truncated Rhombohedron
- Spherical Wedge Formulas
- Square Pillar Formulas
- Star Pyramid Formulas

Formullas

- Toroid Formulas
- Torus Formulas
- Trirectangular Tetrahedron Formulas Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

