

Broad Crested Weir Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 20 Broad Crested Weir Formulas

Broad Crested Weir

1) Actual Discharge over Broad Crested Weir

 $\mathbf{K} igg| \mathrm{Q_a} = \mathrm{C_d} \cdot \mathrm{L_w} \cdot \mathrm{h_c} \cdot \sqrt{(2 \cdot \mathrm{g}) \cdot (\mathrm{H} - \mathrm{h_c})}$

Open Calculator

 $\texttt{ex} \left[17.54701 \text{m}^3/\text{s} = 0.66 \cdot 3 \text{m} \cdot 1.001 \text{m} \cdot \sqrt{(2 \cdot 9.8 \text{m/s}^2) \cdot (5 \text{m} - 1.001 \text{m})} \right]$

- 2) Additional Head given Head for Broad Crested Weir
- $\mathbf{h}_{\mathrm{a}} = \mathbf{H}_{\mathrm{Upstream}} \mathbf{H}$

Open Calculator

- $= 5.1 \mathrm{m} = 10.1 \mathrm{m} 5 \mathrm{m}$
- 3) Coefficient of Discharge for Max Discharge over Crested Weir
- $extbf{C}_{ ext{d}} = rac{ ext{Q}_{ ext{W(max)}}}{1.70 \cdot ext{L}_{ ext{w}} \cdot (ext{H})^{rac{3}{2}}}$

Open Calculator

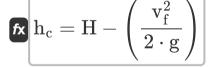
 $oxed{ex} 0.659421 = rac{37.6 {
m m}^3/{
m s}}{1.70 \cdot 3 {
m m} \cdot (5 {
m m})^{rac{3}{2}}}$



4) Coefficient of Discharge given Actual Discharge over Broad Crested Weir

 $\left| \mathrm{C_d} = rac{\mathrm{Q_a}}{\mathrm{L_w} \cdot \mathrm{h_c} \cdot \sqrt{(2 \cdot \mathrm{g}) \cdot (\mathrm{H} - \mathrm{h_c})}}
ight|$

Open Calculator


5) Coefficient of Discharge given Discharge of Weir if Critical Depth is Constant

Open Calculator

ex
$$0.466505 = rac{26.6 ext{m}^3/ ext{s}}{1.70 \cdot 3 ext{m} \cdot (5 ext{m})^{rac{3}{2}}}$$

6) Critical Depth due to Reduction in Area of Flow Section given Total Head

Open Calculator 🗗

$$extbf{ex} 1.04898 ext{m} = 5 ext{m} - \left(rac{(8.8 ext{m/s})^2}{2 \cdot 9.8 ext{m/s}^2}
ight)$$

7) Discharge over Broad Crested Weir

 $\mathbf{K} \mathbf{Q}_{\mathrm{w}} = \mathbf{L}_{\mathrm{w}} \cdot \mathbf{h}_{\mathrm{c}} \cdot \sqrt{(2 \cdot [\mathrm{g}]) \cdot (\mathrm{H} - \mathrm{h}_{\mathrm{c}})}$

Open Calculator

 $ext{ex} \ 26.59539 ext{m}^3/ ext{s} = 3 ext{m} \cdot 1.001 ext{m} \cdot \sqrt{(2 \cdot [ext{g}]) \cdot (5 ext{m} - 1.001 ext{m})}$

8) Head for Broad Crested Weir

 $\mathbf{f}_{\mathbf{W}}\mathbf{H}_{\mathrm{Upstream}} = (\mathbf{H} + \mathbf{h}_{\mathrm{a}})$

Open Calculator

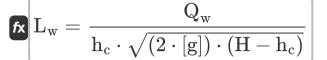
 $[10.01 \mathrm{m} = (5 \mathrm{m} + 5.01 \mathrm{m})]$

9) Head if Velocity is considered for Discharge over Broad Crested Weir

$$\mathbf{E} \mathbf{H} = \left(rac{\mathbf{Q}_{\mathrm{W(max)}}}{1.70 \cdot \mathrm{Cd} \cdot \mathrm{Lw}}
ight)^{rac{2}{3}}$$

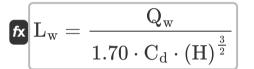
Open Calculator 🗹

 $ext{ex} \left[4.997074 ext{m} = \left(rac{37.6 ext{m}^3/ ext{s}}{1.70 \cdot 0.66 \cdot 3 ext{m}}
ight)^{rac{2}{3}}$


10) Length of Crest given Actual Discharge over Broad Crested Weir

$$\mathbf{L}_{\mathrm{w}} = rac{\mathrm{Q_{a}}}{\mathrm{C_{d} \cdot h_{c} \cdot \sqrt{(2 \cdot \mathrm{g}) \cdot (\mathrm{H} - \mathrm{h_{c}})}}}$$

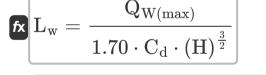
Open Calculator


11) Length of Crest given Discharge over Weir

Open Calculator

 $= \frac{26.6 \text{m}^3/\text{s}}{1.001 \text{m} \cdot \sqrt{(2 \cdot [\text{g}]) \cdot (5 \text{m} - 1.001 \text{m})}}$

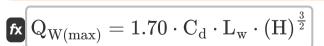
12) Length of Crest if Critical Depth is Constant for Discharge of Weir



ge of weir 🗳

Open Calculator

 $\mathbf{ex} \left[2.120478 \mathrm{m} = rac{26.6 \mathrm{m}^3 / \mathrm{s}}{1.70 \cdot 0.66 \cdot (5 \mathrm{m})^{rac{3}{2}}}
ight]$


13) Length of Crest over Broad Crested Weir for Max Discharge

Open Calculator 🗗

 $ext{ex} \ 2.997367 ext{m} = rac{37.6 ext{m}^3/ ext{s}}{1.70 \cdot 0.66 \cdot (5 ext{m})^{rac{3}{2}}}$

14) Max Discharge over Broad Crested Weir

Open Calculator

 $ext{ex} \ 37.63302 ext{m}^3/ ext{s} = 1.70 \cdot 0.66 \cdot 3 ext{m} \cdot (5 ext{m})^{rac{3}{2}}$

15) Maximum Discharge of Broad Crested Weir if Critical Depth is Constant

$$\mathbf{Q}_{\mathrm{W(max)}} = 1.70 \cdot \mathrm{C_d} \cdot \mathrm{L_w} \cdot \mathrm{(H)}^{rac{3}{2}}$$

Open Calculator

$$\mathbf{ex} \ 37.63302 \mathrm{m}^3/\mathrm{s} = 1.70 \cdot 0.66 \cdot 3\mathrm{m} \cdot (5\mathrm{m})^{rac{3}{2}}$$

16) Total Head above Weir Crest

$$\mathbf{H} = \mathbf{h}_{\mathrm{c}} + \left(rac{\mathbf{v}_{\mathrm{f}}^2}{2\cdot\mathbf{g}}
ight)^{2}$$

Open Calculator 🖸

$$ext{ex} \ 4.95202 ext{m} = 1.001 ext{m} + \left(rac{(8.8 ext{m/s})^2}{2 \cdot 9.8 ext{m/s}^2}
ight)$$

17) Total Head for Actual Discharge over Broad Crested Weir 🛂

$$\mathbf{H} = \left(\left(\left(\frac{\mathrm{Q_a}}{\mathrm{C_d} \cdot \mathrm{L_w} \cdot \mathrm{h_c}} \right)^2 \right) \cdot \left(\frac{1}{2 \cdot \mathrm{g}} \right) \right) + \mathrm{h_c}$$

ex

$$oxed{4.996808 ext{m} = \left(\left(\left(rac{17.54 ext{m}^3/ ext{s}}{0.66 \cdot 3 ext{m} \cdot 1.001 ext{m}}
ight)^2
ight) \cdot \left(rac{1}{2 \cdot 9.8 ext{m}/ ext{s}^2}
ight)
ight) + 1.001 ext{m}}$$

18) Total Head for Maximum Discharge

 $\mathbf{H} = \left(\frac{\mathrm{Q_{W(max)}}}{1.70 \cdot \mathrm{Ca} \cdot \mathrm{Ler}} \right)^{\frac{2}{3}}$

Open Calculator 🗗

 $oxed{4.997074 ext{m} = \left(rac{37.6 ext{m}^3/ ext{s}}{1.70 \cdot 0.66 \cdot 3 ext{m}}
ight)^{rac{2}{3}}}$

19) Total Head given Discharge over Weir Crest

 $\mathbf{H} = \left(\left(rac{Q_w}{L_w \cdot h_c}
ight)^2
ight) \cdot \left(rac{1}{2 \cdot [g]}
ight) + h_c$

Open Calculator

 $= \left(\left(\frac{26.6 \text{m}^3/\text{s}}{3\text{m} \cdot 1.001 \text{m}} \right)^2 \right) \cdot \left(\frac{1}{2 \cdot [\text{g}]} \right) + 1.001 \text{m}$

20) Velocity of Flow given Head

 $\left| \mathbf{v}_{\mathrm{f}}
ight| \mathrm{v}_{\mathrm{f}} = \sqrt{(2 \cdot \mathrm{g}) \cdot (\mathrm{H} - \mathrm{h}_{\mathrm{c}})}$

Open Calculator 🗗

 $ext{ex} \ 8.853271 ext{m/s} = \sqrt{(2 \cdot 9.8 ext{m/s}^2) \cdot (5 ext{m} - 1.001 ext{m})}$

Variables Used

- C_d Coefficient of Discharge
- g Acceleration due to Gravity (Meter per Square Second)
- **H** Total Head (Meter)
- **h**_a Additional Head (Meter)
- **h**_c Critical Depth of Weir (*Meter*)
- Hupstream Head on Upstream of Weir (Meter)
- L_w Length of Weir Crest (Meter)
- Qa Actual Discharge over Broad Crested Weir (Cubic Meter per Second)
- Q_w Discharge Over Broad Crested Weir (Cubic Meter per Second)
- Q_{W(max)} Max Discharge Over Broad Crested Weir (Cubic Meter per Second)
- Vf Velocity of Fluid for Weir (Meter per Second)

Constants, Functions, Measurements used

- Constant: [g], 9.80665
 Gravitational acceleration on Earth
- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²)
 Acceleration Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)

 Volumetric Flow Rate Unit Conversion

Check other formula lists

- Broad Crested Weir Formulas
- Flow Over a Trapizoidal and Triangular Weir or Notch
 Formulas
- Flow Over Rectangular Sharp Crested Weir or Notch

- Formulas 🗗
- Submerged Weirs Formulas
- Time Required to Empty a
 Reservoir with Rectangular Weir

 Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/19/2024 | 10:05:56 AM UTC

Please leave your feedback here...

