

Estimating Marine and Coastal Winds Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 28 Estimating Marine and Coastal Winds Formulas

Estimating Marine and Coastal Winds

Measured Wind Directions

1) Ambient Pressure at Periphery of Storm

$$\mathbf{p}_{\mathrm{n}} = \left(rac{\mathrm{p} - \mathrm{p}_{\mathrm{c}}}{\mathrm{exp}(-rac{\mathrm{A}}{\mathrm{p}})}
ight) + \mathrm{p}_{\mathrm{c}}$$

Open Calculator 🗗

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} 975 ext{mbar} & = \left(rac{975 ext{mbar} - 965 ext{mbar}}{ ext{exp} \left(-rac{50 ext{m}}{\left(48 ext{m}
ight)^5}
ight)}
ight) + 965 ext{mbar} \end{aligned}$$

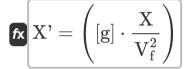
2) Characteristic Wave Height given Dimensionless Wave Height

$$\mathbf{H} = rac{\mathrm{H'}\cdot\mathrm{V}_\mathrm{f}^2}{[\mathrm{g}]}$$

Open Calculator

$$extbf{ex} 110.1294 ext{m} = rac{30 \cdot (6 ext{m/s})^2}{ ext{[g]}}$$

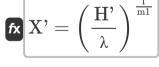
3) Cyclostrophic Approximation to Wind Speed


$$\textbf{FE} \boxed{ U_c = \left(A \cdot B \cdot (p_n - p_c) \cdot \frac{exp\left(-\frac{A}{r^B}\right)}{\rho \cdot r^B} \right)^{0.5} }$$

Open Calculator 🗗

ex

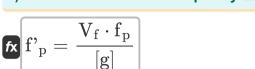
$$oxed{0.027408 = \left(50 ext{m} \cdot 5 \cdot \left(974.90 ext{mbar} - 965 ext{mbar}
ight) \cdot rac{ ext{exp}\left(-rac{50 ext{m}}{\left(48 ext{m}
ight)^5}
ight)}{1.293 ext{kg/m}^3 \cdot \left(48 ext{m}
ight)^5}
ight)^{0.5}}$$


4) Dimensionless Fetch

Open Calculator 🗗

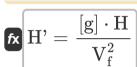
$$oxed{4.086104} = \left([\mathrm{g}] \cdot rac{15\mathrm{m}}{\left(6\mathrm{m/s}
ight)^2}
ight)$$

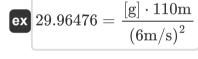
5) Dimensionless Fetch given Fetch-limited Dimensionless Wave Height



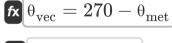
Open Calculator

$$= 2.330127 = \left(\frac{30}{1.6}\right)^{\frac{1}{2}}$$


6) Dimensionless Wave Frequency


Open Calculator

$$7.953786 = rac{6 ext{m/s} \cdot 13 ext{Hz}}{[ext{g}]}$$


7) Dimensionless Wave Height

Open Calculator

8) Direction in Cartesian Coordinate System 🗗

Open Calculator G

| = 180 = 270 - 90 |

9) Direction in Standard Meteorological Terms fx $heta_{ m met} = 270 - heta_{ m vec}$

Open Calculator

|90| = 270 - 180

10) Distance from Center of Storm Circulation to Location of Maximum Wind Speed

 $m R_{max} = A^{rac{1}{B}}$

Open Calculator

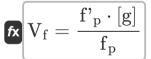
 $\mathbf{ex} \ 2.186724 \mathrm{m} = (50 \mathrm{m})^{\frac{1}{5}}$

11) Fetch-Limited Dimensionless Wave Height

fx $H' = \lambda \cdot \left(X'^{\mathrm{m1}}\right)$

Open Calculator

 $\mathbf{ex} \left[29.584 = 1.6 \cdot \left(\left(4.3
ight)^2
ight)
ight]$


12) Frequency of Spectral Peak for Dimensionless Wave Frequency

 $\left|\mathbf{f_p} = rac{\mathbf{f'_p \cdot [g]}}{V_f}
ight|$

Open Calculator 🗗

= $13.07553 ext{Hz} = rac{8 \cdot [ext{g}]}{6 ext{m/s}}$

13) Friction Velocity for Dimensionless Wave Frequency

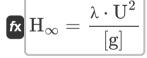
Open Calculator

 $= 6.034862 ext{m/s} = rac{8 \cdot [ext{g}]}{13 ext{Hz}}$

14) Friction Velocity given Dimensionless Fetch

 $V_{\mathrm{f}} = \sqrt{[\mathrm{g}] \cdot rac{\mathrm{X}}{\mathrm{X}'}}$

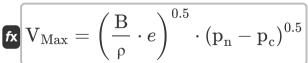
Open Calculator


= $5.848867 ext{m/s} = \sqrt{[ext{g}] \cdot rac{15 ext{m}}{4.3}}$

15) Friction Velocity given Dimensionless Wave Height

 $V_{
m f} = \sqrt{rac{[{
m g}] \cdot {
m H}}{{
m H}'}}$

Open Calculator

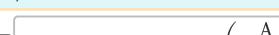

16) Fully Developed Wave Height

Open Calculator

 $\mathbf{ex} = 2.610474 \mathrm{m} = \frac{1.6 \cdot (4 \mathrm{m/s})^2}{[\mathrm{g}]}$

17) Maximum Velocity in Storm 🗗

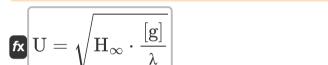
Open Calculator 🗗


 $= \left(\frac{5}{1.293 \text{kg/m}^3} \cdot e\right)^{0.5} \cdot (974.90 \text{mbar} - 965 \text{mbar})^{0.5}$

18) Pressure Profile in Hurricane Winds 🗗

Open Calculator

Open Calculator G


Open Calculator

Open Calculator

$$p = p_c + (p_n - p_c) \cdot \exp\left(-rac{A}{r^B}
ight)$$

$$\boxed{ 974.9 \text{mbar} = 965 \text{mbar} + (974.90 \text{mbar} - 965 \text{mbar}) \cdot \exp \left(-\frac{50 \text{m}}{\left(48 \text{m} \right)^5} \right) }$$

19) Wind Speed given Fully Developed Wave Height G

 $\left| \frac{1}{2} \right| = \sqrt{2.6 \mathrm{m} \cdot \frac{\mathrm{[g]}}{1.2}}$

Wave Hindcasting and Forecasting

20) Drag Coefficient for Wind Speed at 10m Elevation

 $|\mathbf{K}| \, \mathrm{C_D} = 0.001 \cdot (1.1 + (0.035 \cdot \mathrm{V_{10}}))$

 $0.00187 = 0.001 \cdot (1.1 + (0.035 \cdot 22 \text{m/s}))$

21) Limiting Wave Period

$$T_{
m p} = 9.78 \cdot \left(\left(rac{{
m D_w}}{{
m [g]}}
ight)^{0.5}
ight)$$

$$\boxed{20.95004\mathrm{s} = 9.78 \cdot \left(\left(\frac{45\mathrm{m}}{[\mathrm{g}]} \right)^{0.5} \right)}$$

22) Spectral Energy Density

 $\mathbf{E}_{(\mathrm{f})} = rac{\lambda \cdot \left(\left[\mathrm{g}
ight]^2
ight) \cdot \left(\mathrm{f}^{-5}
ight)}{\left(2 \cdot \pi
ight)^4}$

Open Calculator

Open Calculator

 $\boxed{ \begin{array}{c} \textbf{ex} \\ 0.003085 = \\ \hline \\ \hline \\ \left(2 \cdot \pi\right)^4 \end{array} }$

23) Spectral Energy Density or Classical Moskowitz Spectrum

fx $\mathrm{E}_{(\mathrm{f})} = \left(rac{\lambda \cdot \left(\left[\mathrm{g}
ight]^2
ight) \cdot \left(\mathrm{f}^{-5}
ight)}{\left(2 \cdot \pi
ight)^4}
ight) \cdot \exp{\left(0.74 \cdot \left(rac{\mathrm{f}}{\mathrm{f}_\mathrm{u}}
ight)^{-4}
ight)}$

 $= \left(\frac{1.6 \cdot \left([\mathrm{g}]^2 \right) \cdot \left((2)^{-5} \right)}{\left(2 \cdot \pi \right)^4} \right) \cdot \exp \left(0.74 \cdot \left(\frac{2}{0.0001} \right)^{-4} \right)$

24) Straight-Line Distance given Time required for Waves Crossing Fetch under Wind Velocity

 $\mathbf{x} = \left(rac{\mathbf{t}_{\mathrm{x,u}} \cdot \mathbf{U}^{0.34} \cdot [\mathbf{g}]^{0.33}}{77.23}
ight)^{rac{\overline{0.67}}{0.67}}$

Open Calculator

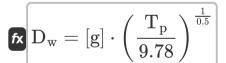
 $= \left(\frac{140 \cdot (4 \text{m/s})^{0.34} \cdot [\text{g}]^{0.33}}{77.23}\right)^{\frac{0.67}{0.67}}$

25) Straight-Line Distance over which Wind Blows

 $\mathbf{x} = \left(rac{V_{\mathrm{f}}^2}{[\mathrm{g}]}
ight) \cdot 5.23 \cdot 10^{-3} \cdot \left([\mathrm{g}] \cdot rac{\mathrm{t}}{V_{\mathrm{f}}}
ight)^{rac{3}{2}}$

Open Calculator 🗗

 $\boxed{ 14.99991 m = \left(\frac{\left(6m/s \right)^2}{[g]} \right) \cdot 5.23 \cdot 10^{-3} \cdot \left([g] \cdot \frac{51.9s}{6m/s} \right)^{\frac{3}{2}} }$


26) Time required for Waves Crossing Fetch under Wind Velocity to become Fetch Limited

 \mathbf{fx} $\mathbf{t}_{\mathrm{x,u}} = 77.23 \cdot \left(rac{\mathbf{X}^{0.67}}{\mathbf{U}^{0.34} \cdot [\mathrm{g}]^{0.33}}
ight)$

Open Calculator

 $\boxed{ 139.2724 \mathrm{s} = 77.23 \cdot \left(\frac{\left(15 \mathrm{m}\right)^{0.67}}{\left(4 \mathrm{m/s}\right)^{0.34} \cdot \left[\mathrm{g}\right]^{0.33}} \right) }$

27) Water Depth for given Limiting Wave Period

 $ext{ex} \ 45.2149 ext{m} = [ext{g}] \cdot \left(rac{21 ext{s}}{9.78}
ight)^{rac{1}{0.5}}$

28) Wind Speed given Time required for Waves crossing Fetch under Wind Velocity

 $\mathbf{E} \left[\mathbf{U} = \left(rac{77.23 \cdot \mathbf{X}^{0.67}}{\mathbf{t}_{\mathrm{x,u}} \cdot [\mathrm{g}]^{0.33}}
ight)^{rac{1}{0.34}}
ight]$

Open Calculator

$$= \left(\frac{77.23 \cdot (15\text{m})^{0.67}}{140\text{s} \cdot [\text{g}]^{0.33}} \right)^{\frac{1}{0.34}}$$

Variables Used

- A Scaling Parameter (Meter)
- B Parameter Controlling Peakedness
- C_D Drag Coefficient
- **D**_w Water Depth from Bed (Meter)
- E_(f) Spectral Energy Density
- f Coriolis Frequency
- f_p Frequency at Spectral Peak (Hertz)
- f'_p Dimensionless Wave Frequency
- **f**₁₁ Limiting Frequency
- **H** Characteristic Wave Height (Meter)
- H' Dimensionless Wave Height
- **H**_∞ Fully Developed Wave Height (*Meter*)
- m1 Dimensionless Exponent
- p Pressure at Radius (Millibar)
- pc Central Pressure in Storm (Millibar)
- p_n Ambient Pressure at Periphery of Storm (Millibar)
- r Arbitrary Radius (Meter)
- R_{max} Distance from Center of Storm Circulation (Meter)
- t Wind Duration (Second)
- T_p Limiting Wave Period (Second)
- $t_{x,u}$ Time required for Waves crossing Fetch (Second)
- **U** Wind Speed (Meter per Second)
- U_c Cyclostrophic Approximation to Wind Speed

- V₁₀ Wind Speed at Height of 10 m (Meter per Second)
- **V**_f Friction Velocity (Meter per Second)
- **V**_{Max} Maximum Velocity of Wind (Meter per Second)
- X Straight Line Distance over which Wind Blows (Meter)
- X' Dimensionless Fetch
- θ_{met} Direction in Standard Meteorological Terms
- θ_{vec} Direction in Cartesian Coordinate system
- λ Dimensionless Constant
- p Density of Air (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Constant: [g], 9.80665

 Gravitational acceleration on Earth
- Constant: e, 2.71828182845904523536028747135266249
 Napier's constant
- Function: exp, exp(Number)

 n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Second (s)
 Time Unit Conversion
- Measurement: Pressure in Millibar (mbar)
 Pressure Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Frequency in Hertz (Hz)
 Frequency Unit Conversion
- Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion

Check other formula lists

- Calculation of Forces on Ocean Structures Formulas
- Density Currents in Harbors
 Formulas
- Density Currents in Rivers
 Formulas
- Dredging Equipment Formulas
- Estimating Marine and Coastal Winds Formulas

- Hydrodynamics of Tidal Inlets-2
 Formulas
- Meteorology and Wave Climate Formulas
- Oceanography Formulas
- Shore Protection Formulas
- Wave Prediction Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/26/2024 | 8:49:32 AM UTC

Please leave your feedback here...

