

Wave Period Distribution and Wave Spectrum Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 10 Wave Period Distribution and Wave Spectrum Formulas

Wave Period Distribution and Wave Spectrum

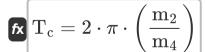
1) Equilibrium Form of PM Spectrum for Fully-Developed Seas

fx Open Calculator

$$\mathrm{E_{f}} = \left(rac{0.0081\cdot\left[\mathrm{g}
ight]^{2}}{\left(2\cdot\pi
ight)^{4}\cdot\mathrm{f}^{5}}
ight)\cdot\exp\!\left(-0.24\cdot\left(rac{2\cdot\pi\cdot\mathrm{U}\cdot\mathrm{f}}{\left[\mathrm{g}
ight]}
ight)^{-4}
ight)$$

ex

$$\boxed{1.5\text{E}^-8 = \left(\frac{0.0081 \cdot \left[g\right]^2}{\left(2 \cdot \pi\right)^4 \cdot \left(8\text{kHz}\right)^5}\right) \cdot \exp\left(-0.24 \cdot \left(\frac{2 \cdot \pi \cdot 4\text{m/s} \cdot 8\text{kHz}}{\left[g\right]}\right)^{-4}\right)}$$


2) Maximum Wave Period 🔄

fx $T_{
m max} = \Delta \cdot T'$

 $85.8s = 33 \cdot 2.6s$

3) Mean Crest Period 🖸

ex
$$14.90925 s = 2 \cdot \pi \cdot \left(\frac{1.4}{0.59}\right)$$

4) Mean Zero-upcrossing Period

 $ag{T'}_{
m Z} = 2 \cdot \pi \cdot \sqrt{rac{{
m m}_0}{{
m m}_2}}$

Open Calculator 🗗

ex $86.44478 ext{s} = 2 \cdot \pi \cdot \sqrt{\frac{265}{1.4}}$

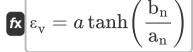
5) Most Probable Maximum Wave Period

 $ag{T}_{
m max} = 2 \cdot rac{\sqrt{1+{
m v}^2}}{1} + \sqrt{1+\left(16 \cdot rac{{
m v}^2}{\pi} \cdot {
m H}^2
ight)}$

Open Calculator

 $ext{ex} 87.80989 ext{s} = 2 \cdot rac{\sqrt{1 + (10)^2}}{1} + \sqrt{1 + \left(16 \cdot rac{(10)^2}{\pi} \cdot (3 ext{m})^2
ight)}$

6) Probability Density of Wave Period


 $\left| \mathbf{p} = 2.7 \cdot \left(rac{\mathrm{P}^3}{\mathrm{T}'}
ight) \cdot \exp \left(-0.675 \cdot \left(rac{\mathrm{P}}{\mathrm{T}'}
ight)^4
ight)
ight|$

Open Calculator

 $\boxed{1.116046 = 2.7 \cdot \left(\frac{(1.03)^3}{2.6 \text{s}}\right) \cdot \exp\left(-0.675 \cdot \left(\frac{1.03}{2.6 \text{s}}\right)^4\right)}$

7) Relative Phase given coefficients

Open Calculator

8) Spectral Bandwidth

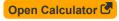
$$V = \sqrt{1-\left(rac{m_2^2}{m_0\cdot m_4}
ight)}$$

Open Calculator 🗗

ex
$$0.993712 \mathrm{m} = \sqrt{1 - \left(rac{(1.4)^2}{265 \cdot 0.59}
ight)}$$

9) Spectral Width

$$\mathbf{v} = \sqrt{\left(\mathbf{m}_0 \cdot rac{\mathbf{m}_2}{\mathbf{m}_1^2}
ight) - 1}$$


$$\mathbf{ex} = 9.578622 = \sqrt{\left(265 \cdot \frac{1.4}{\left(2\right)^2}\right) - 1}$$

10) Wave Component Amplitude

$$\mathbf{a} = \sqrt{0.5 \cdot \sqrt{a_{\mathrm{n}}^2 + b_{\mathrm{n}}^2}}$$

$$ext{ex} \left[0.551487 ext{m} = \sqrt{0.5 \cdot \sqrt{(0.6)^2 + (0.1)^2}}
ight]$$

Variables Used

- a Wave Amplitude (Meter)
- a_n Coefficient of Wave Component Amplitude
- bn Coefficient of Wave Component Amplitude bn
- Ef Frequency Energy Spectrum
- **f** Wave Frequency (Kilohertz)
- **H** Wave Height (Meter)
- m₀ Zero-th Moment of Wave Spectrum
- m₁ Moment of Wave Spectrum 1
- m₂ Moment of Wave Spectrum 2
- m₄ Moment of Wave Spectrum 4
- p Probability
- P Wave Period
- T' Mean Wave Period (Second)
- T_c Wave Crest Period (Second)
- T_{max} Maximum Wave Period (Second)
- T'_Z Mean Zero-upcrossing Period (Second)
- **U** Wind Speed (Meter per Second)
- V Spectral Width
- **V** Spectral Bandwidth (Meter)
- A Coefficient Eckman
- ε_ν Relative Phase

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Constant: [g], 9.80665

 Gravitational acceleration on Earth
- Function: atanh, atanh(Number)

 The inverse hyperbolic tangent function returns the value whose hyperbolic tangent is a number.
- Function: exp, exp(Number)
 n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Function: tanh, tanh(Number)

 The hyperbolic tangent function (tanh) is a function that is defined as the ratio of the hyperbolic sine function (sinh) to the hyperbolic cosine function (cosh).
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Time in Second (s)

 Time Unit Conversion
- Measurement: Speed in Meter per Second (m/s)
 Speed Unit Conversion
- Measurement: Frequency in Kilohertz (kHz)
 Frequency Unit Conversion

Check other formula lists

- Cnoidal Wave Theory Formulas Wave Period Formulas •
- Horizontal and Vertical Semi-Axis of Ellipse Formulas
- Wave Parameters Formulas
- Wave Period Distribution and Wave Spectrum Formulas
- Zero-Crossing Method Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

5/15/2024 | 5:23:21 AM UTC

Please leave your feedback here...

