

Confined Aquifer Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 60 Confined Aquifer Formulas

Confined Aquifer &

Aquifer Discharge 2

1) Confined Aquifer Discharge given Coefficient of Transmissibility

$$\left| \mathbf{Q}
ight| = rac{2 \cdot \pi \cdot \mathrm{T_{envi}} \cdot \mathrm{s_t}}{\log \left(\left(rac{\mathrm{R_w}}{\mathrm{r}}
ight), e
ight)}$$

Open Calculator 🗗

$$oxed{ex} 1.07059 \mathrm{m}^3/\mathrm{s} = rac{2 \cdot \pi \cdot 1.5 \mathrm{m}^2/\mathrm{s} \cdot 0.83 \mathrm{m}}{\logig(ig(rac{8.6 \mathrm{m}}{7.5 \mathrm{m}}ig), eig)}$$

2) Confined Aquifer Discharge given Coefficient of Transmissibility and Depth of Water

$$egin{aligned} \mathsf{Fx} \ \mathsf{Q} = rac{2.72 \cdot \mathrm{T_w} \cdot (\mathrm{h_2} - \mathrm{h_1})}{\log \left(\left(rac{\mathrm{r_2}}{\mathrm{r_1}}
ight), 10
ight)} \end{aligned}$$

$$\boxed{ 1.02266 \mathrm{m}^3/\mathrm{s} = \frac{2.72 \cdot 26.9 \mathrm{m}^2/\mathrm{s} \cdot \left(17.8644 \mathrm{m} - 17.85 \mathrm{m}\right)}{\log\left(\left(\frac{10.0 \mathrm{m}}{1.07 \mathrm{m}}\right), 10\right)} }$$

3) Confined Aquifer Discharge given Depth of Water in Two Wells 🗗

 $ext{Qcaq} = rac{2.72 \cdot ext{K}_{ ext{w}} \cdot ext{b}_{ ext{p}} \cdot (ext{h}_2 - ext{h}_1)}{ ext{log} \Big(\Big(rac{ ext{r}_2}{ ext{r}_1}\Big), 10 \Big)}$

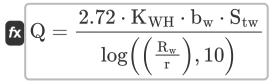
Open Calculator 🗗

 $\boxed{1.009354 \text{m}^3/\text{s} = \frac{2.72 \cdot 1125 \text{cm/s} \cdot 2.36 \text{m} \cdot \left(17.8644 \text{m} - 17.85 \text{m}\right)}{\log\left(\left(\frac{10.0 \text{m}}{1.07 \text{m}}\right), 10\right)} }$

4) Confined Aquifer Discharge given Drawdown at Well

 $\left| \mathbf{Q}
ight| = rac{2 \cdot \pi \cdot \mathbf{K}_{\mathrm{WH}} \cdot \mathbf{b}_{\mathrm{p}} \cdot \mathbf{S}_{\mathrm{tw}}}{\log \left(\left(rac{\mathbf{R}_{\mathrm{w}}}{\mathrm{r}}
ight), e
ight)}$

Open Calculator


 $\boxed{1.00049 \text{m}^{_{3}}/\text{s} = \frac{2 \cdot \pi \cdot 10.00 \text{cm/s} \cdot 2.36 \text{m} \cdot 4.93 \text{m}}{\log \left(\left(\frac{8.6 \text{m}}{7.5 \text{m}}\right), e\right)}}$

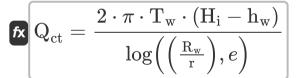
5) Confined Aquifer Discharge with Base 10 given Coefficient of Transmissibility

 $ext{R} Q = rac{2.72 \cdot T_{envi} \cdot S_{tw}}{\log \left(\left(rac{R_w}{r}
ight), 10
ight)}$

6) Confined Aquifer Discharge with Base 10 given Drawdown at Well 🖒

Open Calculator 🗗

 $\boxed{1.127796 \text{m}^3/\text{s} = \frac{2.72 \cdot 10.00 \text{cm/s} \cdot 14.15 \text{m} \cdot 4.93 \text{m}}{\log \left(\left(\frac{8.6 \text{m}}{7.5 \text{m}} \right), 10 \right)} }$


7) Discharge in Confined Aquifer

 $\mathbf{Q}_{\mathrm{c}} = rac{2 \cdot \pi \cdot \mathrm{K}_{\mathrm{WH}} \cdot \mathrm{b}_{\mathrm{w}} \cdot (\mathrm{H}_{\mathrm{i}} - \mathrm{h}_{\mathrm{w}})}{\log \left(\left(rac{\mathrm{R}_{\mathrm{w}}}{\mathrm{r}}
ight), e
ight)}$

Open Calculator

 $\frac{\text{ex}}{0.048671 \text{m}^3/\text{s}} = \frac{2 \cdot \pi \cdot 10.00 \text{cm/s} \cdot 14.15 \text{m} \cdot (2.48 \text{m} - 2.44 \text{m})}{\log \left(\left(\frac{8.6 \text{m}}{7.5 \text{m}}\right), e\right)}$

8) Discharge in Confined Aquifer given Coefficient of Transmissibility

9) Discharge in Confined Aquifer with Base 10

 $oxed{Q} = rac{2.72 \cdot \mathrm{K_w} \cdot \mathrm{b_w} \cdot (\mathrm{H_i} - \mathrm{h_w})}{\log \left(\left(rac{\mathrm{R_w}}{\mathrm{r}}
ight), 10
ight)}$

Open Calculator 🗗

 $\boxed{ 1.029428 \text{m}^3/\text{s} = \frac{2.72 \cdot 1125 \text{cm/s} \cdot 14.15 \text{m} \cdot (2.48 \text{m} - 2.44 \text{m})}{\log \left(\left(\frac{8.6 \text{m}}{7.5 \text{m}} \right), 10 \right)} }$

10) Discharge in Confined Aquifer with Base 10 given Coefficient of Transmissibility

 $\mathbf{Q}_{\mathrm{c}} = rac{2.72 \cdot \mathrm{T_w} \cdot (\mathrm{H_i} - \mathrm{h_w})}{\mathrm{log} \Big(\Big(rac{\mathrm{R_w}}{\mathrm{r}} \Big), 10 \Big)}$

Open Calculator

Aquifer Thickness **G**

11) Aquifer Thickness from Impermeable Layer given Coefficient of Transmissibility

 $\mathbf{K} \mathbf{H}_{\mathrm{i}} = \mathbf{h}_{\mathrm{w}} + \left(rac{\mathrm{Q} \cdot \mathrm{log}\left(\left(rac{\mathrm{R}_{\mathrm{w}}}{\mathrm{r}}
ight), e
ight)}{2 \cdot \pi \cdot \mathrm{T}_{\mathrm{w}}}
ight)$

$$\boxed{2.483663 \mathrm{m} = 2.44 \mathrm{m} + \left(\frac{1.01 \mathrm{m}^3/\mathrm{s} \cdot \log\left(\left(\frac{8.6 \mathrm{m}}{7.5 \mathrm{m}}\right), e\right)}{2 \cdot \pi \cdot 26.9 \mathrm{m}^2/\mathrm{s}}\right)}$$

12) Aquifer Thickness from Impermeable Layer given Coefficient of Transmissibility with Base 10

 $\mathbf{H}_{\mathrm{i}} = \mathrm{h_{w}} + \left(rac{\mathrm{Q} \cdot \mathrm{log}\left(\left(rac{\mathrm{R_{w}}}{\mathrm{r}}
ight), 10
ight)}{2.72 \cdot \mathrm{T_{w}}}
ight)$

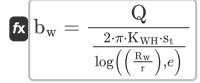
Open Calculator

 $oxed{ex} \left[2.672243 \mathrm{m} = 2.44 \mathrm{m} + \left(rac{1.01 \mathrm{m}^3 / \mathrm{s} \cdot \mathrm{log} \left(\left(rac{8.6 \mathrm{m}}{7.5 \mathrm{m}}
ight), 10
ight)}{2.72 \cdot 26.9 \mathrm{m}^2 / \mathrm{s}}
ight)$

13) Aquifer Thickness from Impermeable Layer given Discharge in Confined Aquifer

 $\mathbf{H}_{\mathrm{i}} = \mathrm{h}_{\mathrm{w}} + \left(rac{\mathrm{Q} \cdot \mathrm{log}\left(\left(rac{\mathrm{R}_{\mathrm{w}}}{\mathrm{r}}
ight), e
ight)}{2 \cdot \pi \cdot \mathrm{K}_{\mathrm{w}} \cdot \mathrm{b}_{\mathrm{w}}}
ight)$

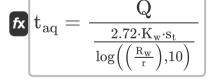
$$= 2.447378 \mathrm{m} = 2.44 \mathrm{m} + \left(\frac{1.01 \mathrm{m}^3/\mathrm{s} \cdot \log \left(\left(\frac{8.6 \mathrm{m}}{7.5 \mathrm{m}} \right), e \right)}{2 \cdot \pi \cdot 1125 \mathrm{cm/s} \cdot 14.15 \mathrm{m}} \right)$$


14) Aquifer Thickness from Impermeable Layer given Discharge in Confined Aquifer with Base 10

 $\mathbf{H}_{\mathrm{i}} = \mathrm{h}_{\mathrm{w}} + \left(rac{\mathrm{Q} \cdot \mathrm{log}\left(\left(rac{\mathrm{R}_{\mathrm{w}}}{\mathrm{r}}
ight), 10
ight)}{2.72 \cdot \mathrm{K}_{\mathrm{w}} \cdot \mathrm{b}_{\mathrm{w}}}
ight)$

Open Calculator

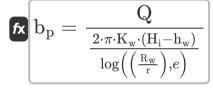
 $= 2.479245 \text{m} = 2.44 \text{m} + \left(\frac{1.01 \text{m}^3/\text{s} \cdot \log\left(\left(\frac{8.6 \text{m}}{7.5 \text{m}}\right), 10\right)}{2.72 \cdot 1125 \text{cm/s} \cdot 14.15 \text{m}} \right)$


15) Aquifer Thickness given Confined Aquifer Discharge

Open Calculator

 $= \frac{1.01 \text{m}^3/\text{s}}{\frac{2 \cdot \pi \cdot 10.00 \text{cm/s} \cdot 0.83 \text{m}}{\log((\frac{8.6 \text{m}}{7.5 \text{m}}), e)} }$

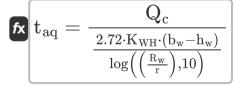
16) Aquifer Thickness given Confined Aquifer Discharge with Base 10 🚰


17) Aquifer Thickness given Depth of Water in Two Wells

 $\mathbf{b}_{\mathrm{p}} = rac{\mathrm{Q}}{rac{2.72\cdot\mathrm{K_w\cdot(h_2-h_1)}}{\log\left(\left(rac{\mathrm{r_2}}{\mathrm{r_1}}
ight),10
ight)}}$

Open Calculator 🗗

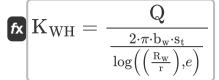
$$2.361511 m = \frac{1.01 m^3/s}{\frac{2.72 \cdot 1125 cm/s \cdot (17.8644 m - 17.85 m)}{\log((\frac{10.0 m}{1.07 m}), 10)} }$$


18) Thickness of Confined Aquifer given Discharge in Confined Aquifer

Open Calculator

$$= \frac{1.01 \text{m}^3/\text{s}}{\frac{2 \cdot \pi \cdot 1125 \text{cm/s} \cdot (2.48 \text{m} - 2.44 \text{m})}{\log((\frac{8.6 \text{m}}{7.5 \text{m}}), e)} }$$

19) Thickness of Confined Aquifer given Discharge in Confined Aquifer with Base 10



Coefficient of Permeability 🗗

20) Coefficient of Permeability given Confined Aquifer Discharge

Open Calculator

 $= 10.00076 \text{cm/s} = \frac{1.01 \text{m}^3/\text{s}}{\frac{2 \cdot \pi \cdot 14.15 \text{m} \cdot 0.83 \text{m}}{\log\left(\left(\frac{8.6 \text{m}}{7.5 \text{m}}\right), e\right)} }$

21) Coefficient of Permeability given Confined Aquifer Discharge with Base

$ext{K}_{ ext{WH}} = rac{ ext{Q}}{rac{2.72 \cdot ext{b}_{ ext{w}} \cdot ext{S}_{ ext{tw}}}{ ext{log}\left(\left(rac{ ext{Rw}}{ ext{r}} ight),10 ight)}}$

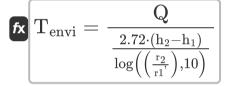
Open Calculator

22) Coefficient of Permeability given Depth of Water in Two Wells

$$\mathbf{K}_{\mathrm{w}} = rac{\mathrm{Q}}{rac{2.72 \cdot \mathrm{b_p} \cdot (\mathrm{h_2 - h_1})}{\mathrm{log}\left(\left(rac{\mathrm{r_2}}{\mathrm{r_1}}
ight), 10
ight)}}$$

Open Calculator 🗗

Coefficient of Transmissibility


23) Coefficient of Transmissibility given Confined Aquifer Discharge

$$ext{T}_{ ext{envi}} = rac{ ext{Q}}{rac{2 \cdot \pi \cdot ext{s}_{ ext{t}}}{\log \left(\left(rac{ ext{Rw}}{ ext{r}}
ight), e
ight)}}$$

Open Calculator

$$= \frac{1.01 \text{m}^3/\text{s}}{\frac{2 \cdot \pi \cdot 0.83 \text{m}}{\log\left(\left(\frac{8.6 \text{m}}{7.5 \text{m}}\right), e\right)} }$$

24) Coefficient of Transmissibility given Depth of Water in Two Wells

Open Calculator

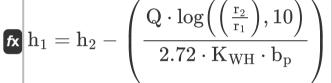
$$= 2.578636 \text{m}^2/\text{s} = \frac{1.01 \text{m}^3/\text{s}}{\frac{2.72 \cdot (17.8644 \text{m} - 17.85 \text{m})}{\log((\frac{10.0 \text{m}}{0.00000001 \text{m}}), 10)}}$$

25) Coefficient of Transmissibility given Discharge in Confined Aquifer with Base 10

$$ext{T}_{ ext{envi}} = rac{ ext{Q}}{rac{2.72 \cdot (ext{b}_{ ext{w}} - ext{h}_{ ext{well}})}{ ext{log}\left(\left(rac{ ext{R}_{ ext{w}}}{ ext{r}}
ight), 10
ight)}}$$

Depth of Water in Well

26) Depth of Water in 1st Well given Coefficient of Transmissibility



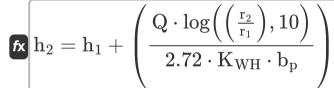
 $\mathbf{h}_1 = \mathbf{h}_2 - \left(rac{\mathrm{Q} \cdot \log \left(\left(rac{\mathrm{r}_2}{\mathrm{r}_1}
ight), 10
ight)}{2.72 \cdot \mathrm{T}_{\mathrm{envi}}}
ight)$

Open Calculator

$$\boxed{ 17.60936 \mathrm{m} = 17.8644 \mathrm{m} - \left(\frac{1.01 \mathrm{m}^3/\mathrm{s} \cdot \log \left(\left(\frac{10.0 \mathrm{m}}{1.07 \mathrm{m}} \right), 10 \right)}{2.72 \cdot 1.5 \mathrm{m}^2/\mathrm{s}} \right) }$$

27) Depth of Water in 1st Well given Confined Aquifer Discharge

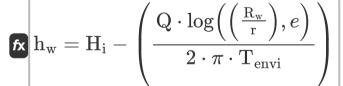
$$= 16.24336 \mathrm{m} = 17.8644 \mathrm{m} - \left(\frac{1.01 \mathrm{m}^3/\mathrm{s} \cdot \log \left(\left(\frac{10.0 \mathrm{m}}{1.07 \mathrm{m}} \right), 10 \right)}{2.72 \cdot 10.00 \mathrm{cm/s} \cdot 2.36 \mathrm{m}} \right)$$


28) Depth of Water in 2nd Well given Coefficient of Transmissibility

 $\mathbf{h}_2 = \mathbf{h}_1 + \left(rac{\mathbf{Q} \cdot \log\left(\left(rac{\mathbf{r}_2}{\mathbf{r}_1}
ight), 10
ight)}{2.72 \cdot \mathrm{T}_{\mathrm{envi}}}
ight)$

Open Calculator 🚰

 $\boxed{ 18.10504 \mathrm{m} = 17.85 \mathrm{m} + \left(\frac{1.01 \mathrm{m}^3 / \mathrm{s} \cdot \log \left(\left(\frac{10.0 \mathrm{m}}{1.07 \mathrm{m}} \right), 10 \right)}{2.72 \cdot 1.5 \mathrm{m}^2 / \mathrm{s}} \right) }$


29) Depth of Water in 2nd Well given Confined Aquifer Discharge

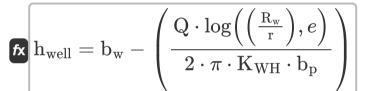
Open Calculator

 $\boxed{ 19.47104 \mathrm{m} = 17.85 \mathrm{m} + \left(\frac{1.01 \mathrm{m}^3 / \mathrm{s} \cdot \log \left(\left(\frac{10.0 \mathrm{m}}{1.07 \mathrm{m}} \right), 10 \right)}{2.72 \cdot 10.00 \mathrm{cm} / \mathrm{s} \cdot 2.36 \mathrm{m}} \right) }$

30) Depth of Water in Well given Coefficient of Transmissibility 🗗

Open Calculator 🗗

 $\boxed{1.696974\mathrm{m} = 2.48\mathrm{m} - \left(\frac{1.01\mathrm{m}^3/\mathrm{s} \cdot \log\left(\left(\frac{8.6\mathrm{m}}{7.5\mathrm{m}}\right), e\right)}{2 \cdot \pi \cdot 1.5\mathrm{m}^2/\mathrm{s}}\right)}$

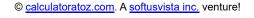

31) Depth of Water in Well given Coefficient of Transmissibility with Base

 $\mathbf{h}_{\mathrm{well}} = \mathbf{b}_{\mathrm{w}} - \left(rac{\mathbf{Q} \cdot \log\left(\left(rac{\mathbf{R}_{\mathrm{w}}}{r}
ight), 10
ight)}{2.72 \cdot \mathrm{T}_{\mathrm{envi}}}
ight)$

Open Calculator

 $\boxed{ 9.985116 m = 14.15 m - \left(\frac{1.01 m^3/s \cdot \log \left(\left(\frac{8.6 m}{7.5 m} \right), 10 \right)}{2.72 \cdot 1.5 m^2/s} \right) }$

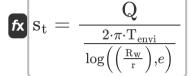
32) Depth of Water in Well given Discharge in Confined Aquifer


Open Calculator 🗗

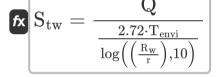
 $= 2.173138 \text{m} = 14.15 \text{m} - \left(\frac{1.01 \text{m}^3/\text{s} \cdot \log \left(\left(\frac{8.6 \text{m}}{7.5 \text{m}} \right), e \right)}{2 \cdot \pi \cdot 10.00 \text{cm/s} \cdot 2.36 \text{m}} \right)$

33) Depth of Water in Well given Discharge in Confined Aquifer with Base 10

$$\mathbf{f}_{\mathrm{well}} = b_{\mathrm{w}} - \left(rac{\mathrm{Q} \cdot \mathrm{log}\left(\left(rac{\mathrm{R}_{\mathrm{w}}}{\mathrm{r}}
ight), 10
ight)}{2.72 \cdot \mathrm{K}_{\mathrm{w}} \cdot b_{\mathrm{p}}}
ight)$$



Drawdown at well


34) Drawdown at Well given Coefficient of Transmissibility

Open Calculator

$$= \frac{1.01 \text{m}^3/\text{s}}{\frac{2 \cdot \pi \cdot 1.5 \text{m}^2/\text{s}}{\log((\frac{8.6 \text{m}}{7.5 \text{m}}), e)} }$$

35) Drawdown at Well given Coefficient of Transmissibility with Base 10

Open Calculator 🗗

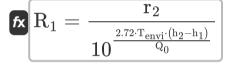
$$egin{align*} egin{align*} egin{align*} egin{align*} egin{align*} & 1.01 \mathrm{m}^3/\mathrm{s} \ \hline & rac{2.72 \cdot 1.5 \mathrm{m}^2/\mathrm{s}}{\log \left(\left(rac{8.6 \mathrm{m}}{7.5 \mathrm{m}}
ight), 10
ight)} \end{aligned}$$

36) Drawdown at Well given Confined Aquifer Discharge

$$\mathbf{f_{x}} \mathbf{S}_{\mathrm{tw}} = rac{\mathbf{Q}}{rac{2 \cdot \pi \cdot \mathbf{K}_{\mathrm{WH}} \cdot \mathbf{b}_{\mathrm{p}}}{\log\left(\left(rac{\mathbf{R}_{\mathrm{w}}}{\mathbf{r}}
ight), e
ight)}}$$

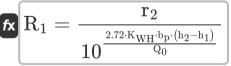
$$= \frac{1.01 \text{m}^3/\text{s}}{\frac{2 \cdot \pi \cdot 10.00 \text{cm/s} \cdot 2.36 \text{m}}{\log \left(\left(\frac{8.6 \text{m}}{7.5 \text{m}} \right), e \right)} }$$

37) Drawdown at Well given Confined Aquifer Discharge with Base 10 🛂

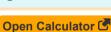

Open Calculator 🗗

$$S_{\mathrm{tw}} = rac{\mathrm{Q}}{rac{2.72 \cdot \mathrm{K}_{\mathrm{WH}} \cdot \mathrm{b}_{\mathrm{w}}}{\log\left(\left(rac{\mathrm{R}_{\mathrm{w}}}{\mathrm{r}}
ight), 10
ight)}}$$

$$\boxed{4.415072 m = \frac{1.01 m^3/s}{\frac{2.72 \cdot 10.00 cm/s \cdot 14.15 m}{\log\left(\left(\frac{8.6 m}{7.5 m}\right), 10\right)}}}$$


Radial Distance and Radius of well

38) Radial Distance of Well 1 given Coefficient of Transmissibility and Discharge


9.97298m = -

39) Radial Distance of Well 1 given Confined Aquifer Discharge 🗗

10

$$oxed{9.995744 m} = rac{10.0 m}{10^{rac{2.72 \cdot 10.00 cm/s \cdot 2.36 m \cdot (17.8644 m - 17.85 m)}{50 m^3/s}}}$$

40) Radial Distance of Well 2 given Coefficient of Transmissibility and Discharge

 $m_R=r_1\cdot 10^{rac{2.72\cdot T_{
m envi}\cdot (h_2-h_1)}{Q_0}}$

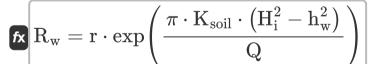
Open Calculator 🚰

41) Radial Distance of Well 2 given Confined Aquifer Discharge

 $m_R_2 = r_1 \cdot 10^{rac{2.72 \cdot K_{WH} \cdot b_p \cdot (h_2 - h_1)}{Q_0}}$

Open Calculator

 $extbf{ex} 1.070456 ext{m} = 1.07 ext{m} \cdot 10^{rac{2.72 \cdot 10.00 ext{cm/s} \cdot 2.36 ext{m} \cdot (17.8644 ext{m} - 17.85 ext{m})}{50 ext{m}^3/ ext{s}}$


42) Radius of Influence given Discharge and Length of Strainer

 $m R_w = r \cdot 10^{rac{2.72 \cdot K_{WH} \cdot s_t \cdot \left(L + \left(rac{s_t}{2}
ight)
ight)}{Q}}$

Open Calculator 🗗

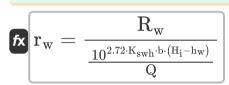
ex $25.99403 \mathrm{m} = 7.5 \mathrm{m} \cdot 10^{rac{2.72 \cdot 10.00 \mathrm{cm/s} \cdot 0.83 \mathrm{m} \cdot \left(2 \mathrm{m} + \left(rac{0.83 \mathrm{m}}{2}
ight)
ight)}{1.01 \mathrm{m}^3/\mathrm{s}}}$

43) Radius of Influence given Discharge in Unconfined Aquifer

Open Calculator 🗗

 $= 7.500046 \text{m} = 7.5 \text{m} \cdot \exp \left(\frac{\pi \cdot 0.001 \text{cm/s} \cdot \left((2.48 \text{m})^2 - (2.44 \text{m})^2 \right)}{1.01 \text{m}^3 / \text{s}} \right)$

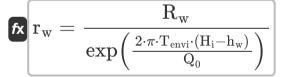
44) Radius of Influence given Discharge in Unconfined Aquifer with Base


10

$$m R_w = r \cdot 10^{rac{1.36 \cdot K_{soil} \cdot \left(H_i^2 - h_w^2
ight)}{Q}}$$

Open Calculator 🗗

$$= 7.500046 \mathrm{m} = 7.5 \mathrm{m} \cdot 10^{\frac{1.36 \cdot 0.001 \mathrm{cm/s} \cdot \left((2.48 \mathrm{m})^2 - (2.44 \mathrm{m})^2 \right)}{1.01 \mathrm{m}^3/\mathrm{s}} }$$


45) Radius of Well for Discharge in Confined Aquifer with Base 10

Open Calculator

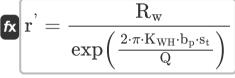
$$= \frac{8.6 \text{m}}{\frac{10^{2.72 \cdot 0.0022 \cdot 3 \text{m} \cdot (2.48 \text{m} - 2.44 \text{m})}}{1.01 \text{m}^3/\text{s}}}$$

46) Radius of Well given Coefficient of Transmissibility

$$ext{ex} 8.535401 ext{m} = rac{8.6 ext{m}}{ ext{exp} \Big(rac{2 \cdot \pi \cdot 1.5 ext{m}^2/ ext{s} \cdot (2.48 ext{m} - 2.44 ext{m})}{50 ext{m}^3/ ext{s}} \Big)$$

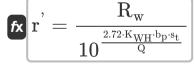
47) Radius of Well given Coefficient of Transmissibility with Base 10

Open Calculator 2


Open Calculator

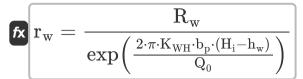
Open Calculator 2

$$\mathbf{r}_{\mathrm{w}} = rac{\mathrm{R}_{\mathrm{w}}}{10^{rac{2.72 \cdot \mathrm{T}_{\mathrm{envi}} \cdot \left(\mathrm{H_{i}}-\mathrm{hw}
ight)}{\mathrm{Q}_{0}}}}$$


$$egin{align*} \mathbf{8.535608m} = rac{8.6 \mathrm{m}}{10^{rac{2.72 \cdot 1.5 \mathrm{m}^2/\mathrm{s} \cdot (2.48 \mathrm{m} - 2.44 \mathrm{m})}{50 \mathrm{m}^3/\mathrm{s}}} } \end{split}$$

48) Radius of Well given Confined Aquifer Discharge

$$=$$
 $2.542626 \mathrm{m} = rac{8.6 \mathrm{m}}{\exp \left(rac{2 \cdot \pi \cdot 10.00 \mathrm{cm/s} \cdot 2.36 \mathrm{m} \cdot 0.83 \mathrm{m}}{1.01 \mathrm{m}^3/\mathrm{s}}
ight)}$


49) Radius of Well given Confined Aquifer Discharge with Base 10

$$oxed{ex} 2.552584 \mathrm{m} = rac{8.6 \mathrm{m}}{10^{rac{2.72 \cdot 10.00 \mathrm{cm/s} \cdot 2.36 \mathrm{m} \cdot 0.83 \mathrm{m}}{1.01 \mathrm{m}^2/\mathrm{s}}}}$$

50) Radius of Well given Discharge in Confined Aquifer

Open Calculator

$$=$$
 $8.589804 \mathrm{m} = rac{8.6 \mathrm{m}}{\exp \left(rac{2 \cdot \pi \cdot 10.00 \mathrm{cm/s} \cdot 2.36 \mathrm{m} \cdot (2.48 \mathrm{m} - 2.44 \mathrm{m})}{50 \mathrm{m}^3 / \mathrm{s}}
ight)}$

51) Radius of Well given Drawdown at Well

$$\mathbf{r}^{"} = rac{\mathrm{R_w}}{\mathrm{exp}\Big(rac{2\cdot\pi\cdot\mathrm{T_{envi}\cdot\mathrm{s_t}}}{\mathrm{Q}}\Big)}$$

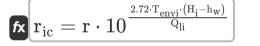
Open Calculator

$$ext{ex} \left[0.003723 ext{m} = rac{8.6 ext{m}}{ ext{exp} \left(rac{2 \cdot \pi \cdot 1.5 ext{m}^2 / ext{s} \cdot 0.83 ext{m}}{1.01 ext{m}^3 / ext{s}}
ight)$$

52) Radius of Well given Drawdown at Well with Base 10

$$\mathbf{r}^{"}=rac{\mathrm{R_{w}}}{10^{rac{2.72\cdot\mathrm{T_{envi}\cdot\mathrm{st}}}{\mathrm{Q}}}}$$

Radius of Influence 2


53) Radius of Influence given Coefficient of Transmissibility

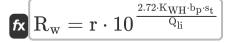
$$\mathbf{r}_{
m ic} = \mathbf{r} \cdot \expigg(rac{2 \cdot \pi \cdot \mathrm{T}_{
m envi} \cdot (\mathrm{H_i} - \mathrm{h_w})}{\mathrm{Q}_0}igg)$$

Open Calculator

 $\boxed{ 7.556762 m = 7.5 m \cdot \exp \bigg(\frac{2 \cdot \pi \cdot 1.5 m^2 / s \cdot (2.48 m - 2.44 m)}{50 m^3 / s} \bigg) }$

54) Radius of Influence given Coefficient of Transmissibility with Base 10

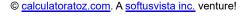
Open Calculator


ex $7.690264 \mathrm{m} = 7.5 \mathrm{m} \cdot 10^{rac{2.72 \cdot 1.5 \mathrm{m}^2/\mathrm{s} \cdot (2.48 \mathrm{m} - 2.44 \mathrm{m})}{15 \mathrm{m}^2/\mathrm{s}}}$

55) Radius of Influence given Confined Aquifer Discharge

$$R_{
m w} = r \cdot \exp \left(rac{2 \cdot \pi \cdot K_{
m WH} \cdot b_{
m p} \cdot s_{
m t}}{Q_{
m li}}
ight)$$

Open Calculator


56) Radius of Influence given Confined Aquifer Discharge with Base 10

Open Calculator

 $extstyle = 8.139183 ext{m} = 7.5 ext{m} \cdot 10^{rac{2.72 \cdot 10.00 ext{cm/s} \cdot 2.36 ext{m} \cdot 0.83 ext{m}}{15 ext{m}'/ ext{s}}}$

57) Radius of Influence given Discharge in Confined Aquifer 💪

 $R_{\mathrm{id}} = r \cdot \mathrm{exp} igg(rac{2 \cdot \pi \cdot \mathrm{K}_{\mathrm{WH}} \cdot \mathrm{b}_{\mathrm{p}} \cdot (\mathrm{H_{i}} - \mathrm{h_{w}})}{\mathrm{Q}_{\mathrm{o}}} igg)$

Open Calculator

ex

 $7.508902 \mathrm{m} = 7.5 \mathrm{m} \cdot \mathrm{exp} igg(rac{2 \cdot \pi \cdot 10.00 \mathrm{cm/s} \cdot 2.36 \mathrm{m} \cdot (2.48 \mathrm{m} - 2.44 \mathrm{m})}{50 \mathrm{m}^{\scriptscriptstyle 3}/\mathrm{s}} igg)$

58) Radius of Influence given Discharge in Confined Aquifer with Base 10

 $m R_{id} = r \cdot 10^{rac{2.72 \cdot K_{
m WH} \cdot b_{
m p} \cdot (H_i - h_{
m w})}{Q_0}}$

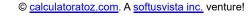
Open Calculator

59) Radius of Influence given Drawdown at Well 🛂

 $m R_{iw} = r \cdot expigg(rac{2 \cdot \pi \cdot T_{
m envi} \cdot s_{
m t}}{Q_{
m li}}igg)$

Open Calculator

ex $12.6342 \text{m} = 7.5 \text{m} \cdot \exp\left(\frac{2 \cdot \pi \cdot 1.5 \text{m}^2/\text{s} \cdot 0.83 \text{m}}{15 \text{m}^3/\text{s}}\right)$


60) Radius of Influence given Drawdown at Well with Base 10 🗗

 $R_{iw} = r \cdot 10^{\frac{2.72 \cdot T_{envi} \cdot s_t}{Q_{li}}}$

Open Calculator

ex $12.61308 \mathrm{m} = 7.5 \mathrm{m} \cdot 10^{rac{2.72 \cdot 1.5 \mathrm{m}^2/\mathrm{s} \cdot 0.83 \mathrm{m}}{15 \mathrm{m}^2/\mathrm{s}}}$

Variables Used

- **b** Thickness of Aquifer (*Meter*)
- **b**_p Aquifer Thickness During Pumping (*Meter*)
- **b**_w Aquifer Thickness (Meter)
- h₁ Depth of Water 1 (Meter)
- **h**₂ Depth of Water 2 (Meter)
- **H**i Initial Aquifer Thickness (*Meter*)
- h_w Depth of Water (Meter)
- h_{well} Depth of Water in Well (Meter)
- K_{soil} Coefficient of Permeability of Soil Particle (Centimeter per Second)
- K_{swh} Standard Coefficient of Permeability
- **K**_w Coefficient of Permeability (Centimeter per Second)
- K_{WH} Coefficient of Permeability in Well Hydraulics (Centimeter per Second)
- L Length of Strainer (Meter)
- **Q** Discharge (Cubic Meter per Second)
- Qn Discharge at Time t=0 (Cubic Meter per Second)
- Q_c Discharge in Confined Aquifer (Cubic Meter per Second)
- Q_{ct} Discharge given Coefficient of Transmissibility (Cubic Meter per Second)
- Q_{Ii} Discharge of Liquid (Cubic Meter per Second)
- Qcaq Confined Aquifer Discharge given Depth of Water (Cubic Meter per Second)

- r Radius of Well (Meter)
- r₁ Radial Distance at Observation Well 1 (Meter)
- R₁ Radial Distance 1 (Meter)
- **r**₂ Radial Distance at Observation Well 2 (*Meter*)
- R₂ Radial Distance at Well 2 (Meter)
- r_{ic} Radius of Influence(Coeffi. of Transmissibility) (Meter)
- Rid Radius of Influence given Discharge (Meter)
- R_{iw} Radius of Influence given Drawdown at Well (Meter)
- r_w Radius of Well given Discharge (Meter)
- R_w Radius of Influence (Meter)
- r Radius of Well in Eviron. Engin. (Meter)
- r" Radius of Well in Well Hydraulics (Meter)
- r1 Radial Distance at Well 1 (Meter)
- St Total Drawdown (Meter)
- S_{tw} Total Drawdown in Well (Meter)
- t_{aq} Aquifer Thickness given Confined Aquifer Discharge (Meter)
- Tenvi Coefficient of Transmissibility (Square Meter per Second)
- T_w Coefficient of Transmissibility in Enviro. Eng. (Square Meter per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Constant: e, 2.71828182845904523536028747135266249
 Napier's constant
- Function: exp, exp(Number)

 n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: log, log(Base, Number)
 Logarithmic function is an inverse function to exponentiation.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Speed in Centimeter per Second (cm/s)
 Speed Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)

 Volumetric Flow Rate Unit Conversion
- Measurement: Kinematic Viscosity in Square Meter per Second (m²/s)

 Kinematic Viscosity Unit Conversion

Check other formula lists

Confined Aquifer Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/21/2024 | 10:27:53 AM UTC

Please leave your feedback here...

