Wave Height Formulas

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 20 Wave Height Formulas

Wave Height

1) Maximum Wave Height
$f \mathrm{fx} \mathrm{H}_{\max }=1.86 \cdot \mathrm{H}_{\mathrm{s}}$
ex $120.9 \mathrm{~m}=1.86 \cdot 65 \mathrm{~m}$
2) Mean Wave Period given Maximum Wave Period
$f \times \mathrm{T}^{\prime}=\frac{\mathrm{T}_{\max }}{\Delta}$
ex $14.66667 \mathrm{~s}=\frac{88 \mathrm{~s}}{6}$
3) Significant Wave Height given Wave Period for North Sea
$f \times H_{s}=\left(\frac{T_{\mathrm{NS}}}{3.94}\right)^{\frac{1}{0.376}}$
ex $64.99959 \mathrm{~m}=\left(\frac{18.93 \mathrm{~s}}{3.94}\right)^{\frac{1}{0.376}}$
4) Wave Height for Horizontal Component of Local Fluid Velocity
$f \mathrm{f} H=\mathrm{u} \cdot 2 \cdot \lambda$.

$$
\frac{\cosh \left(2 \cdot \pi \cdot \frac{d}{\lambda}\right)}{\cosh \left(2 \cdot \pi \cdot \frac{D_{Z+d}}{\lambda}\right) \cdot \cos (\theta)}
$$

ex $3.05399 \mathrm{~m}=50 \mathrm{~m} / \mathrm{s} \cdot 2 \cdot 26.8 \mathrm{~m} \cdot \frac{\cosh \left(2 \cdot \pi \cdot \frac{0.9 \mathrm{~m}}{26.8 \mathrm{~m}}\right)}{[\mathrm{g}] \cdot 95 \mathrm{~s} \cdot \cosh \left(2 \cdot \pi \cdot \frac{2 \mathrm{~m}}{26.8 \mathrm{~m}}\right) \cdot \cos \left(30^{\circ}\right)}$
5) Wave Height for Horizontal Fluid Particle Displacement
fx
$\mathrm{H}=\varepsilon \cdot(4 \cdot \pi \cdot \lambda) \cdot \frac{\cosh \left(2 \cdot \pi \cdot \frac{\mathrm{D}}{\lambda}\right)}{[\mathrm{g}] \cdot \mathrm{T}_{\mathrm{h}}^{2}} \cdot\left(\left(\cosh \left(2 \cdot \pi \cdot \frac{\mathrm{D}_{\mathrm{Z}+\mathrm{d}}}{\lambda}\right)\right)\right) \cdot \sin (\theta)$
ex
$3.055555 \mathrm{~m}=1.55 \mathrm{~m} \cdot(4 \cdot \pi \cdot 26.8 \mathrm{~m}) \cdot \frac{\cosh \left(2 \cdot \pi \cdot \frac{12 \mathrm{~m}}{26.8 \mathrm{~m}}\right)}{[\mathrm{g}] \cdot(9 \mathrm{~s})^{2}} \cdot\left(\left(\cosh \left(2 \cdot \pi \cdot \frac{2 \mathrm{~m}}{26.8 \mathrm{~m}}\right)\right)\right) \cdot \sin \left(30^{\circ}\right)$
6) Wave Height for Local Fluid Particle Acceleration of Horizontal Component

$$
\cosh \left(2 \cdot \pi \cdot \frac{\mathrm{D}}{\lambda}\right)
$$

$f_{x} H=\alpha_{x / y} \cdot \lambda$.

$$
[\mathrm{g}] \cdot \pi \cdot \cosh \left(2 \cdot \pi \cdot \frac{\mathrm{D}_{\mathrm{Z}+\mathrm{d}}}{\lambda}\right) \cdot \sin (\theta)
$$

ex $2.747798 \mathrm{~m}=0.21 \mathrm{~m} / \mathrm{s} \cdot 26.8 \mathrm{~m} \cdot \frac{\cosh \left(2 \cdot \pi \cdot \frac{12 \mathrm{~m}}{26.8 \mathrm{~m}}\right)}{[\mathrm{g}] \cdot \pi \cdot \cosh \left(2 \cdot \pi \cdot \frac{2 \mathrm{~m}}{26.8 \mathrm{~m}}\right) \cdot \sin \left(30^{\circ}\right)}$
7) Wave Height for Local Fluid Particle Acceleration of Vertical Component
$f \mathrm{fx} H=\left(\alpha_{\mathrm{x} / \mathrm{y}} \cdot \lambda \cdot \frac{\cosh \left(2 \cdot \pi \cdot \frac{\mathrm{D}}{\lambda}\right)}{[\mathrm{g}] \cdot \pi \cdot \sinh \left(2 \cdot \pi \cdot \frac{D_{z+d}}{\lambda}\right) \cdot \cos (\theta)}\right)$
$\mathbf{e x} 3.627765 \mathrm{~m}=\left(0.21 \mathrm{~m} / \mathrm{s} \cdot 26.8 \mathrm{~m} \cdot \frac{\cosh \left(2 \cdot \pi \cdot \frac{12 \mathrm{~m}}{26.8 \mathrm{~m}}\right)}{[\mathrm{g}] \cdot \pi \cdot \sinh \left(2 \cdot \pi \cdot \frac{2 \mathrm{~m}}{26.8 \mathrm{~m}}\right) \cdot \cos \left(30^{\circ}\right)}\right)$
8) Wave Height for Major Horizontal Semi-Axis given Wavelength
$f \times H=A \cdot 2$.

$$
\frac{\sinh \left(2 \cdot \pi \cdot \frac{d}{\lambda}\right)}{\cosh \left(2 \cdot \pi \cdot \frac{D_{z+d}}{\lambda}\right)}
$$

ex $2.564334 \mathrm{~m}=6.707 \cdot 2 \cdot \frac{\sinh \left(2 \cdot \pi \cdot \frac{0.9 \mathrm{~m}}{26.8 \mathrm{~m}}\right)}{\cosh \left(2 \cdot \pi \cdot \frac{2 \mathrm{~m}}{26.8 \mathrm{~m}}\right)}$
9) Wave Height for Minor Vertical Semi-Axis given Wavelength
$f_{x} \mathrm{H}=\mathrm{B} \cdot 2 \cdot \frac{\sinh \left(2 \cdot \pi \cdot \frac{\mathrm{~d}}{\lambda}\right)}{\sinh \left(2 \cdot \pi \cdot \frac{D_{Z+\mathrm{d}}}{\lambda}\right)}$
ex $2.561704 \mathrm{~m}=2.93 \cdot 2 \cdot \frac{\sinh \left(2 \cdot \pi \cdot \frac{0.9 \mathrm{~m}}{26.8 \mathrm{~m}}\right)}{\sinh \left(2 \cdot \pi \cdot \frac{2 \mathrm{~m}}{26.8 \mathrm{~m}}\right)}$
10) Wave Height for Simplified Horizontal Fluid Particle Displacement

区

$f_{\mathbf{x}} \mathrm{H}=\varepsilon \cdot 2 \cdot \frac{\sinh \left(2 \cdot \pi \cdot \frac{\mathrm{D}}{\lambda_{\mathrm{hp}}}\right)}{\cosh \left(2 \cdot \pi \cdot \frac{D_{\mathrm{Z}+\mathrm{d}}}{\lambda_{\mathrm{hp}}}\right)} \cdot \sin (\theta)$
ex $3.023927 \mathrm{~m}=1.55 \mathrm{~m} \cdot 2 \cdot \frac{\sinh \left(2 \cdot \pi \cdot \frac{12 \mathrm{~m}}{52.1 \mathrm{~m}}\right)}{\cosh \left(2 \cdot \pi \cdot \frac{2 \mathrm{~m}}{52.1 \mathrm{~m}}\right)} \cdot \sin \left(30^{\circ}\right)$
11) Wave Height for Simplified Vertical Fluid Particle Displacement
$\mathrm{fx} H=\varepsilon^{\prime} \cdot 2 \cdot \frac{\sinh \left(2 \cdot \pi \cdot \frac{\mathrm{D}}{\lambda_{\mathrm{vp}}}\right)}{\sinh \left(2 \cdot \pi \cdot \frac{\mathrm{D}_{\mathrm{Z}+\mathrm{d}}}{\lambda_{\mathrm{vp}}}\right)} \cdot \cos (\theta)$
ex $3.019906 \mathrm{~m}=0.22 \mathrm{~m} \cdot 2 \cdot \frac{\sinh \left(2 \cdot \pi \cdot \frac{12 \mathrm{~m}}{55.9 \mathrm{~m}}\right)}{\sinh \left(2 \cdot \pi \cdot \frac{2 \mathrm{~m}}{55.9 \mathrm{~m}}\right)} \cdot \cos \left(30^{\circ}\right)$
12) Wave Height for Vertical Component of Local Fluid Velocity

$$
\cosh \left(2 \cdot \pi \cdot \frac{\mathrm{D}}{\lambda}\right)
$$

Open Calculator
$f_{x} H=\left(V_{v} \cdot 2 \cdot \lambda\right)$.

$$
[\mathrm{g}] \cdot \mathrm{T}_{\mathrm{p}} \cdot \sinh \left(2 \cdot \pi \cdot \frac{\mathrm{D}_{\mathrm{Z}+\mathrm{d}}}{\lambda}\right) \cdot \sin (\theta)
$$

ex $3.011975 \mathrm{~m}=(1.522 \mathrm{~m} / \mathrm{s} \cdot 2 \cdot 26.8 \mathrm{~m}) \cdot \frac{\cosh \left(2 \cdot \pi \cdot \frac{12 \mathrm{~m}}{26.8 \mathrm{~m}}\right)}{[\mathrm{g}] \cdot 95 \mathrm{~s} \cdot \sinh \left(2 \cdot \pi \cdot \frac{2 \mathrm{~m}}{26.8 \mathrm{~m}}\right) \cdot \sin \left(30^{\circ}\right)}$
13) Wave Height for Vertical Fluid Particle Displacement
${ }_{\mathrm{fx}} \mathrm{H}^{\prime}=\varepsilon \cdot(4 \cdot \pi \cdot \lambda)$.

$$
\cosh \left(2 \cdot \pi \cdot \frac{\mathrm{D}}{\lambda}\right)
$$

$$
\text { ex } 0.117129 \mathrm{~m}=1.55 \mathrm{~m} \cdot(4 \cdot \pi \cdot 26.8 \mathrm{~m}) \cdot \frac{\cosh \left(2 \cdot \pi \cdot \frac{12 \mathrm{~m}}{26.8 \mathrm{~m}}\right)}{[\mathrm{g}] \cdot(95 \mathrm{~s})^{2} \cdot \sinh \left(2 \cdot \pi \cdot \frac{2 \mathrm{~m}}{26.8 \mathrm{~m}}\right) \cdot \cos \left(30^{\circ}\right)}
$$

14) Wave Height given Wave Amplitude
$f \times H=2 \cdot \mathrm{a}$
ex $3.12 \mathrm{~m}=2 \cdot 1.56 \mathrm{~m}$
15) Wave Height given Wave Period for Mediterranean Sea
$\mathrm{fx}_{\mathrm{K}}^{\mathrm{H}=\left(\frac{\mathrm{T}_{\mathrm{ms}}-4}{2}\right)^{\frac{1}{0.7}}, ~}$
ex $3.084432 \mathrm{~m}=\left(\frac{8.40 \mathrm{~s}-4}{2}\right)^{\frac{1}{0.7}}$
16) Wave Height given Wave Period for North Atlantic Ocean
$\mathrm{fx}_{\mathrm{f}} \mathrm{H}=\frac{\mathrm{T}_{\mathrm{NS}}}{2.5}$
ex $7.572 \mathrm{~m}=\frac{18.93 \mathrm{~s}}{2.5}$
17) Wave Height given Wave Steepness
fx $\mathrm{H}=\varepsilon_{\mathrm{s}} \cdot \lambda$
Open Calculator
ex $3.216 \mathrm{~m}=0.12 \cdot 26.8 \mathrm{~m}$
18) Wave Height Represented by Rayleigh Distribution
$f \mathbf{x} \mathrm{H}_{\mathrm{iw}}=\left(\frac{2 \cdot \mathrm{H}}{\mathrm{H}_{\mathrm{rms}}^{2}}\right) \cdot \exp \left(-\left(\frac{\mathrm{H}^{2}}{\mathrm{H}_{\mathrm{rms}}^{2}}\right)\right)$
ex $0.244677 \mathrm{~m}=\left(\frac{2 \cdot 3 \mathrm{~m}}{(2.9 \mathrm{~m})^{2}}\right) \cdot \exp \left(-\left(\frac{(3 \mathrm{~m})^{2}}{(2.9 \mathrm{~m})^{2}}\right)\right)$
19) Wave Height Represented by Rayleigh Distribution under Narrow Band Condition
$f \mathrm{fx} \mathrm{H}_{\mathrm{iw}}=-\left(1-\exp \left(\frac{\mathrm{H}^{2}}{\mathrm{H}_{\mathrm{rms}}^{2}}\right)\right)$
ex $1.91583 \mathrm{~m}=-\left(1-\exp \left(\frac{(3 \mathrm{~m})^{2}}{(2.9 \mathrm{~m})^{2}}\right)\right)$
20) Wavelength given Wave Steepness
$\mathrm{fx} \lambda=\frac{\mathrm{H}}{\varepsilon_{\mathrm{s}}}$
ex $25 \mathrm{~m}=\frac{3 \mathrm{~m}}{0.12}$

Variables Used

- a Wave Amplitude (Meter)
- A Horizontal Semi-axis of Water Particle
- B Vertical Semi-Axis
- d Depth of Water Wave (Meter)
- D Water Depth (Meter)
- $\mathbf{D}_{\text {Z+d }}$ Distance above Bottom (Meter)
- H Wave Height (Meter)
- H' Wave Height for Vertical Fluid Particle (Meter)
- H_{iw} Individual Wave Height (Meter)
- $\mathrm{H}_{\text {max }}$ Maximum Wave Height (Meter)
- $\mathbf{H}_{\text {rms }}$ Root Mean Square Wave Height (Meter)
- $\mathbf{H}_{\mathbf{s}}$ Significant Wave Height (Meter)
- T' Mean Wave Period (Second)
- $\mathbf{T}_{\mathbf{h}}$ Wave Period for Horizontal Fluid Particle (Second)
- Tmax $_{\text {maximum Wave Period (Second) }}$
- \mathbf{T}_{ms} Wave Period for Mediterranean Sea (Second)
- TNS Wave Period for North Sea (Second)
- $\mathbf{T}_{\mathbf{p}}$ Wave Period (Second)
- u Water Particle Velocity (Meter per Second)
- $\mathbf{V}_{\mathbf{v}}$ Vertical Component of Velocity (Meter per Second)
- $\boldsymbol{\alpha}_{\mathbf{x} / \mathbf{y}}$ Local Fluid Particle Acceleration (Meter per Second)
- Δ Coefficient Eckman
- ε Fluid Particle Displacement (Meter)
- ε^{\prime} Particle Displacement (Meter)
- $\varepsilon_{\mathbf{s}}$ Wave Steepness
- $\boldsymbol{\theta}$ Phase Angle (Degree)
- $\boldsymbol{\lambda}$ Wavelength (Meter)
- $\boldsymbol{\lambda}_{\mathrm{h}}$ Wavelength of Horizontal Fluid Particle (Meter)
- $\boldsymbol{\lambda}_{\mathbf{v p}}$ Wavelength of Vertical Fluid Particle (Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Function: cos, \cos (Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: cosh, cosh(Number)

The hyperbolic cosine function is a mathematical function that is defined as the ratio of the sum of the exponential functions of x and negative x to 2 .

- Function: exp, exp(Number)
n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: sin, \sin (Angle)

Sine is a trigonometric function that describes the ratio of the length of the opposite side of a right triangle to the length of the hypotenuse.

- Function: sinh, sinh(Number)

The hyperbolic sine function, also known as the sinh function, is a mathematical function that is defined as the hyperbolic analogue of the sine function.

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Time in Second (s)

Time Unit Conversion

- Measurement: Speed in Meter per Second (m/s)

Speed Unit Conversion $\sqrt{ }$

- Measurement: Angle in Degree $\left({ }^{\circ}\right)$

Angle Unit Conversion

Check other formula lists

- Cnoidal Wave Theory Formulas
- Horizontal and Vertical Semi-Axis of Ellipse Formulas $\boxed{\square}$
- Parametric Spectrum Models Formulas
- Solitary Wave Formulas
- Subsurface Pressure Formulas
- Wave Celerity Formulas
- Wave Energy Formulas
- Wave Height Formulas
- Wave Parameters Formulas
- Wave Period Formulas
- Wave Period Distribution and Wave Spectrum Formulas
- Wavelength Formulas
- Zero-Crossing Method Formulas $\boxed{\square}$

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

