
calculatoratoz.com

Linear Dispersion Relation of Linear Wave Formulas

Widest Coverage of Calculators and Growing - 30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion! Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 12 Linear Dispersion Relation of Linear Wave Formulas

Linear Dispersion Relation of Linear Wave ©

1) Angular Frequency of Wave
$\mathrm{fx} \omega_{\mathrm{c}}=\sqrt{[\mathrm{g}] \cdot \mathrm{k} \cdot \tanh (\mathrm{k} \cdot \mathrm{d})}$
ex $1.375055 \mathrm{rad} / \mathrm{s}=\sqrt{[\mathrm{g}] \cdot 0.2 \cdot \tanh (0.2 \cdot 10 \mathrm{~m})}$
2) Dimensionless Wave Speed
$f \mathbf{x} \mathbf{v}=\frac{\mathrm{v}_{\mathrm{p}}}{\sqrt{[\mathrm{g}] \cdot \mathrm{d}}}$
ex $50.00579 \mathrm{~m} / \mathrm{s}=\frac{495.2 \mathrm{~m} / \mathrm{s}}{\sqrt{[\mathrm{g}] \cdot 10 \mathrm{~m}}}$
3) Guo Formula of Linear Dispersion Relation

fx

$$
\operatorname{kd}=\left(\omega^{2} \cdot \frac{\mathrm{~d}}{[\mathrm{~g}]}\right) \cdot\left(1-\exp \left(-\left(\omega \cdot \sqrt{\frac{\mathrm{d}}{}_{[\mathrm{g}]}^{\frac{5}{2}}}\right)^{-\frac{2}{5}}\right)\right)
$$

ex
4) Guo Formula of Linear Dispersion Relation for Wave Number
$f \mathrm{x} k=\left(\frac{\omega_{\mathrm{c}}^{2} \cdot \mathrm{~d}}{[\mathrm{~g}]}\right) \cdot \frac{1-\exp \left(-\left(\omega_{\mathrm{c}} \cdot{\sqrt{\frac{\mathrm{d}}{}_{[g]}}}^{\frac{5}{2}}\right)^{-\frac{2}{5}}\right)}{\mathrm{d}}$
Open Calculator
ex
$0.222819=\left(\frac{(2.04 \mathrm{rad} / \mathrm{s})^{2} \cdot 10 \mathrm{~m}}{[\mathrm{~g}]}\right) \cdot \frac{1-\exp \left(-\left(2.04 \mathrm{rad} / \mathrm{s} \cdot{\left.\left.\sqrt{\frac{10 \mathrm{~m}}{[\mathrm{~g}]}^{\frac{5}{2}}}\right)^{-\frac{2}{5}}\right)}_{10 \mathrm{~m}}, \frac{1}{}\right)\right.}{}$
5) Radian Frequency of Waves
$\mathrm{fx} \omega=2 \cdot \frac{\pi}{\mathrm{~T}}$
ex
$6.202552 \mathrm{rad} / \mathrm{s}=2 \cdot \frac{\pi}{1.013}$
6) Relative Wavelength
$f \mathrm{fx} \lambda_{\mathrm{r}}=\frac{\lambda_{\mathrm{o}}}{\mathrm{d}}$
ex $0.7 \mathrm{~m}=\frac{7 \mathrm{~m}}{10 \mathrm{~m}}$
7) Velocity of Propagation in Linear Dispersion Relation
$f \mathrm{fx} \mathrm{C}_{\mathrm{v}}=\sqrt{\frac{[\mathrm{g}] \cdot \mathrm{d} \cdot \tanh (\mathrm{k} \cdot \mathrm{d})}{\mathrm{k} \cdot \mathrm{d}}}$
Open Calculator ©
ex $6.875275 \mathrm{~m} / \mathrm{s}=\sqrt{\frac{[\mathrm{g}] \cdot 10 \mathrm{~m} \cdot \tanh (0.2 \cdot 10 \mathrm{~m})}{0.2 \cdot 10 \mathrm{~m}}}$
8) Velocity of Propagation in Linear Dispersion Relation given Wavelength

ex $6.873787 \mathrm{~m} / \mathrm{s}=\sqrt{\frac{[\mathrm{g}] \cdot 10 \mathrm{~m} \cdot \tanh \left(2 \cdot \pi \cdot \frac{10 \mathrm{~m}}{31.4 \mathrm{~m}}\right)}{2 \cdot \pi \cdot \frac{10 \mathrm{~m}}{31.4 \mathrm{~m}}}}$
9) Wave Number for Steady Two-dimensional Waves
$\mathrm{fx} \mathrm{k}=\frac{2 \cdot \pi}{\lambda^{"}}$
ex $0.200101=\frac{2 \cdot \pi}{31.4 \mathrm{~m}}$
10) Wave Number of Convenient Empirical Explicit Approximation
$f \mathbf{x} \mathbf{k}=\left(\frac{\omega_{\mathrm{c}}^{2}}{[\mathrm{~g}]}\right) \cdot\left(\operatorname{coth}\left(\left(\omega_{\mathrm{c}} \cdot{\sqrt{\frac{\mathrm{d}^{2}}{[g]}}}^{\frac{3}{2}}\right)^{\frac{2}{3}}\right)\right)$
ex $0.458653=\left(\frac{(2.04 \mathrm{rad} / \mathrm{s})^{2}}{[\mathrm{~g}]}\right) \cdot\left(\operatorname{coth}\left(\left(2.04 \mathrm{rad} / \mathrm{s} \cdot \sqrt{\frac{10 \mathrm{~m}}{[\mathrm{~g}]}}\right)^{\frac{3}{2}}\right)\right)$
11) Wave Period given Radian Frequency of Waves
$f \times T=2 \cdot \frac{\pi}{\omega}$
ex $1.013417=2 \cdot \frac{\pi}{6.2 \mathrm{rad} / \mathrm{s}}$
12) Wavelength given Wave Number
$\mathrm{fx} \lambda^{\prime \prime}=\frac{2 \cdot \pi}{\mathrm{k}}$
Open Calculator
ex $31.41593 \mathrm{~m}=\frac{2 \cdot \pi}{0.2}$

Variables Used

- $\mathbf{C}_{\mathbf{v}}$ Velocity of Propagation (Meter per Second)
- d Coastal Mean Depth (Meter)
- k Wave Number for Water Wave
- kd Linear Dispersion Relation
- T Wave Period
- V Wave Speed (Meter per Second)
- $\mathbf{V}_{\mathbf{p}}$ ' Propagation Velocity (Meter per Second)
- $\boldsymbol{\lambda}_{\mathbf{o}}$ Deep-Water Wavelength (Meter)
- $\boldsymbol{\lambda}_{\mathbf{r}}$ Relative Wavelength (Meter)
- $\lambda^{\prime \prime}$ Deep Water Wavelength of Coast (Meter)
- $\boldsymbol{\omega}$ Wave Angular Frequency (Radian per Second)
- $\boldsymbol{\omega}_{\mathbf{c}}$ Angular Frequency of Wave (Radian per Second)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288

Archimedes' constant

- Constant: [g], 9.80665

Gravitational acceleration on Earth

- Function: coth, coth(Number)

The hyperbolic cotangent function, denoted as $\operatorname{coth}(x)$, is defined as the ratio of the hyperbolic cosine to the hyperbolic sine.

- Function: exp, exp(Number) n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Function: $\boldsymbol{t} \boldsymbol{t a n h}, \tanh ($ Number)

The hyperbolic tangent function (tanh) is a function that is defined as the ratio of the hyperbolic sine function (sinh) to the hyperbolic cosine function (cosh).

- Measurement: Length in Meter (m)

Length Unit Conversion

- Measurement: Speed in Meter per Second (m/s) Speed Unit Conversion
- Measurement: Angular Frequency in Radian per Second (rad/s) Angular Frequency Unit Conversion

Check other formula lists

- Group Velocity, Beats, Energy Transport Formulas
- Linear Dispersion Relation of Linear Wave Formulas
- Non-Linear Wave Theory Formulas
- Shoaling, Refraction and Breaking Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

Please leave your feedback here...

