

Flow Over Rectangular Sharp Crested Weir or Notch Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 41 Flow Over Rectangular Sharp Crested Weir or Notch Formulas

Flow Over Rectangular Sharp Crested Weir or Notch

1) Approach Velocity

 $\left| \mathbf{x} \right| v = rac{Q'}{b \cdot d_f}$

Open Calculator

ex $15.4494 \text{m/s} = \frac{153 \text{m}^3/\text{s}}{3.001 \text{m} \cdot 3.3 \text{m}}$

2) Bazins Formula for Discharge if Velocity is considered

 $Q_{\mathrm{Bv}} = m \cdot \sqrt{2 \cdot g} \cdot L_{\mathrm{w}} \cdot H_{\mathrm{Stillwater}}^{rac{3}{2}}$

Open Calculator

3) Bazins Formula for Discharge if Velocity is not considered

 $\left[\mathbf{Q}_{\mathrm{Bv1}} = \mathbf{m} \cdot \sqrt{2 \cdot \mathbf{g}} \cdot \mathbf{L}_{\mathrm{w}} \cdot \mathbf{S}_{\mathrm{w}}^{rac{3}{2}}
ight]$

Open Calculator 🚰

= 15.28934m³/s = $0.407 \cdot \sqrt{2 \cdot 9.8 \text{m/s}^2 \cdot 3 \text{m} \cdot (2\text{m})^{\frac{3}{2}}}$

4) Coefficient for Bazin Formula 🛂

 $m=0.405+\left(rac{0.003}{
m S_w}
ight)$

Open Calculator

 $oxed{ex} \left[0.4065 = 0.405 + \left(rac{0.003}{2 \mathrm{m}}
ight)
ight]$

5) Coefficient for Bazin Formula if Velocity is considered 🗗

 $m m = 0.405 + \left(rac{0.003}{H_{Stillwater}}
ight)$

Open Calculator 🚰

Open Calculator

$$\boxed{ 0.405455 = 0.405 + \left(\frac{0.003}{6.6 \mathrm{m}} \right) }$$

6) Coefficient of Discharge given Discharge if Velocity considered

fx

$$\mathrm{C_d} = rac{\mathrm{Q_{Fr} \cdot 3}}{2 \cdot \left(\sqrt{2 \cdot \mathrm{g}}
ight) \cdot \left(\mathrm{L_w} - 0.1 \cdot \mathrm{n} \cdot \mathrm{H_{Stillwater}}
ight) \cdot \left(\mathrm{H_{Stillwater}^{rac{3}{2}} - H_{\mathrm{V}}^{rac{3}{2}}}
ight)}$$

$$1.06198 = \frac{8 \text{m}^3/\text{s} \cdot 3}{2 \cdot \left(\sqrt{2 \cdot 9.8 \text{m/s}^2}\right) \cdot \left(3 \text{m} - 0.1 \cdot 4 \cdot 6.6 \text{m}\right) \cdot \left(\left(6.6 \text{m}\right)^{\frac{3}{2}} - \left(4.6 \text{m}\right)^{\frac{3}{2}}\right)}$$

7) Coefficient of Discharge given Discharge if Velocity not considered

 $\mathbf{K} \mathbf{C}_{\mathrm{d}} = rac{\mathbf{Q}_{\mathrm{Fr}} \cdot \mathbf{3}}{2 \cdot \left(\sqrt{2 \cdot \mathrm{g}}
ight) \cdot \left(\mathbf{L}_{\mathrm{w}} - 0.1 \cdot \mathbf{n} \cdot \mathbf{S}_{\mathrm{w}}
ight) \cdot \mathbf{S}_{\mathrm{w}}^{rac{3}{2}}}$

Open Calculator

8) Coefficient of Discharge given Discharge over Weir without considering Velocity

$$\boxed{\mathbf{fx}} \mathbf{C_d} = \frac{\mathbf{Q_{Fr'}} \cdot \mathbf{3}}{2 \cdot \left(\sqrt{2 \cdot \mathbf{g}}\right) \cdot \mathbf{L_w} \cdot \mathbf{S_w^{\frac{3}{2}}}}$$

9) Coefficient of Discharge given Discharge Passing over Weir considering Velocity

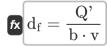
 $\mathbf{C}_{\mathrm{d}} = rac{\mathrm{Q}_{\mathrm{Fr},\cdot}\cdot 3}{2\cdot\left(\sqrt{2\cdot\mathrm{g}}
ight)\cdot\mathrm{L}_{\mathrm{w}}\cdot\left(\left(\mathrm{S}_{\mathrm{w}}+\mathrm{H}_{\mathrm{V}}
ight)^{rac{3}{2}}-\mathrm{H}_{\mathrm{V}}^{rac{3}{2}}
ight)}$

Open Calculator 🗗

10) Coefficient when Bazin Formula for Discharge if Velocity is considered

 $m = rac{Q_{Bv}}{\sqrt{2 \cdot g} \cdot L_w \cdot H_{Stillwater}^{rac{3}{2}}}$

Open Calculator


$$\boxed{0.406975 = \frac{91.65 \text{m}^3/\text{s}}{\sqrt{2 \cdot 9.8 \text{m/s}^2} \cdot 3 \text{m} \cdot (6.6 \text{m})^{\frac{3}{2}}}}$$

11) Coefficient when Bazin Formula for Discharge Velocity is not considered

 $m = rac{\mathrm{Q}_{\mathrm{Bv1}}}{\sqrt{2 \cdot \mathrm{g}} \cdot \mathrm{L}_{\mathrm{w}} \cdot \mathrm{S}_{\mathrm{w}}^{rac{3}{2}}}$

Open Calculator

12) Depth of Water Flow in Channel given Velocity Approach

ex
$$3.376358$$
m = $\frac{153$ m $^3/$ s $}{3.001$ m $\cdot 15.1$ m $/$ s

13) Francis Formula for Discharge for Rectangular Notch if Velocity is considered

Open Calculator $\left| \mathbf{R} \right| \mathrm{Q_{Fr}} = 1.84 \cdot \left(\mathrm{L_w} - 0.1 \cdot \mathrm{n} \cdot \mathrm{H_{Stillwater}}
ight) \cdot \left(\mathrm{H_{Stillwater}^{rac{3}{2}} - H_{V}^{rac{3}{2}}}
ight)$

14) Francis Formula for Discharge for Rectangular Notch if Velocity not considered

Open Calculator

 $\left[\mathbf{R}
ight]\mathrm{Q_{Fr}}=1.84\cdot\left(\mathrm{L_{w}}-0.1\cdot\mathrm{n}\cdot\mathrm{S_{w}}
ight)\cdot\mathrm{S_{w}^{rac{2}{2}}}$

ex $11.44947 \mathrm{m}^3/\mathrm{s} = 1.84 \cdot (3\mathrm{m} - 0.1 \cdot 4 \cdot 2\mathrm{m}) \cdot (2\mathrm{m})^{\frac{3}{2}}$

15) Rehbocks Formula for Coefficient of Discharge

 $\mathbf{C}_{
m d} = 0.605 + 0.08 \cdot \left(rac{
m S_w}{
m h_{Creat}}
ight) + \left(rac{0.001}{
m S_{rr}}
ight)$

Open Calculator

 $0.618833 = 0.605 + 0.08 \cdot \left(\frac{2m}{12m}\right) + \left(\frac{0.001}{2m}\right)$

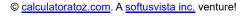
16) Rehbocks Formula for Discharge over Rectangular Weir

Open Calculator 2

$$\mathrm{Q_{Fr'}} = rac{2}{3} \cdot \left(0.605 + 0.08 \cdot \left(rac{\mathrm{S_w}}{\mathrm{h_{Crest}}}
ight) + \left(rac{0.001}{\mathrm{S_w}}
ight)
ight) \cdot \sqrt{2 \cdot \mathrm{g}} \cdot \mathrm{L_w} \cdot \mathrm{S_w^{rac{3}{2}}}$$

ex

$$\boxed{15.49804 \text{m}^{_{3}}/\text{s} = \frac{2}{3} \cdot \left(0.605 + 0.08 \cdot \left(\frac{2\text{m}}{12\text{m}}\right) + \left(\frac{0.001}{2\text{m}}\right)\right) \cdot \sqrt{2 \cdot 9.8 \text{m}/\text{s}^{_{2}}} \cdot 3\text{m} \cdot (2\text{m})^{\frac{3}{2}}}$$


17) Width of Channel given Velocity Approach

 $b = \frac{Q'}{V \cdot dc}$

$$b = \frac{1}{v \cdot d_f}$$

$$= \frac{153 \text{m}^3/\text{s}}{15.1 \text{m/s} \cdot 3.3 \text{m}}$$

Discharge 2

18) Discharge considering Approach Velocity

To, Diodiai go concidening Approach voicetty

Open Calculator

$$oxed{\mathrm{Q_{Fr}} = \left(rac{2}{3}
ight) \cdot \mathrm{C_d} \cdot \sqrt{2 \cdot \mathrm{g}} \cdot \left(\mathrm{L_w} - 0.1 \cdot \mathrm{n} \cdot \mathrm{H_{Stillwater}}
ight) \cdot \left(\mathrm{H_{Stillwater}}^{rac{3}{2}} - \mathrm{H_V^{rac{3}{2}}}
ight)}}$$

ex

$$\boxed{4.971845 \text{m}^3/\text{s} = \left(\frac{2}{3}\right) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \text{m/s}^2} \cdot \left(3 \text{m} - 0.1 \cdot 4 \cdot 6.6 \text{m}\right) \cdot \left(\left(6.6 \text{m}\right)^{\frac{3}{2}} - \left(4.6 \text{m}\right)^{\frac{3}{2}}\right)}$$

19) Discharge for Notch which is to be Calibrated

fx $Q_{Fr'} = k_{Flow} \cdot S_w^n$

Open Calculator 🗗

$$\mathbf{ex} \left[29.44 \mathrm{m}^3 / \mathrm{s} = 1.84 \cdot \left(2 \mathrm{m} \right)^4 \right]$$

20) Discharge given Velocity Approach 🗗

fx $Q' = v \cdot (b \cdot d_f)$

Open Calculator

$$\mathbf{ex} \left[149.5398 \mathrm{m}^{_{3}}/\mathrm{s} = 15.1 \mathrm{m/s} \cdot (3.001 \mathrm{m} \cdot 3.3 \mathrm{m}) \right]$$

21) Discharge over Weir without considering Velocity 🗗

$$\mathbf{R} \mathbf{Q}_{\mathrm{Fr'}} = \left(rac{2}{3}
ight) \cdot \mathrm{C_d} \cdot \sqrt{2 \cdot \mathrm{g}} \cdot \mathrm{L_w} \cdot \mathrm{S_w^{rac{3}{2}}}$$

$$ext{ex} 16.52901 ext{m}^3/ ext{s} = \left(rac{2}{3}
ight) \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 ext{m/s}^2} \cdot 3 ext{m} \cdot (2 ext{m})^{rac{3}{2}}$$

22) Discharge Passing over Weir considering Velocity

 $\mathbf{Q}_{\mathrm{Fr}^{\prime}} = \left(rac{2}{3}
ight) \cdot \mathrm{C_d} \cdot \sqrt{2 \cdot \mathrm{g}} \cdot \mathrm{L_w} \cdot \left(\left(\mathrm{S_w} + \mathrm{H_V}
ight)^{rac{3}{2}} - \mathrm{H_V^{rac{3}{2}}}
ight)$

Open Calculator

Open Calculator

Open Calculator 2

Open Calculator

23) Discharge when End Contractions is suppressed and Velocity is considered

$$Q_{\mathrm{Fr'}} = 1.84 \cdot L_{\mathrm{w}} \cdot \left(H_{\mathrm{Stillwater}}^{rac{3}{2}} - H_{\mathrm{V}}^{rac{3}{2}}
ight)$$
 Open Calculator $oldsymbol{C}$

$$\mathbf{ex} \left[39.13573 \mathrm{m}^3/\mathrm{s} = 1.84 \cdot 3 \mathrm{m} \cdot \left((6.6 \mathrm{m})^{rac{3}{2}} - (4.6 \mathrm{m})^{rac{3}{2}}
ight)
ight]$$

24) Discharge when End Contractions is suppressed and Velocity is not considered

$$\mathbf{R} \mathbf{Q}_{\mathrm{Fr'}} = 1.84 \cdot \mathbf{L}_{\mathrm{w}} \cdot \mathbf{S}_{\mathrm{w}}^{rac{3}{2}}$$

 $ext{ex} 15.61292 ext{m}^3/ ext{s} = 1.84 \cdot 3 ext{m} \cdot (2 ext{m})^{rac{3}{2}}$

Hydraulic Head 🗗

25) Head given Coefficient for Bazin Formula 💪

$${f K} \, {
m S}_{
m w} = rac{0.003}{{
m m} - 0.405}$$

$$\boxed{1.5\text{m} = \frac{0.003}{0.407 - 0.405}}$$

26) Head given Coefficient using Bazin Formula and Velocity 🗗

fx
$$m H_{Stillwater} = rac{0.003}{m-0.405}$$

$$= 1.5 \text{m} = \frac{0.003}{0.407 - 0.405}$$

27) Head given Discharge through Notch which is to be Calibrated 🛂

 $\mathbf{K} \mathbf{S}_{\mathrm{w}} = \left(rac{\mathbf{Q}_{\mathrm{Fr'}}}{\mathbf{k}_{\mathrm{Elow}}}
ight)^{rac{1}{\mathrm{n}}}$

Open Calculator 🚰

 $1.975082 \mathrm{m} = \left(\frac{28 \mathrm{m}^3/\mathrm{s}}{1.84}\right)^{\frac{1}{4}}$

28) Head over Crest for given Discharge without Velocity

 $\mathbf{S}_{\mathrm{w}} = \left(rac{\mathrm{Q}_{\mathrm{Fr}}\cdot 3}{2\cdot \mathrm{C}_{\mathrm{d}}\cdot \sqrt{2\cdot \mathrm{g}}\cdot \mathrm{L}_{\mathrm{w}}}
ight)^{rac{2}{3}}$

Open Calculator

 $oxed{ex} 2.842087 \mathrm{m} = \left(rac{28 \mathrm{m}^3/\mathrm{s} \cdot 3}{2 \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \mathrm{m/s}^2} \cdot 3 \mathrm{m}}
ight)^{rac{2}{3}}$

29) Head over Crest given Discharge Passing over Weir with Velocity

 $\mathbf{S}_{\mathrm{w}} = \left(\left(rac{\mathrm{Q}_{\mathrm{Fr}}, \cdot 3}{2 \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{g}} \cdot \mathrm{L}_{\mathrm{w}}}
ight) + \mathrm{H}_{\mathrm{V}}^{rac{3}{2}}
ight)^{rac{2}{3}} - \mathrm{H}_{\mathrm{V}}$

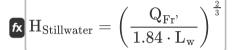
Open Calculator

30) Head when Bazin Formula for Discharge if Velocity is considered

 $\mathbf{f}_{ ext{Normalize}}\mathbf{H}_{ ext{Stillwater}} = \left(rac{Q_{Bv}}{\mathbf{m}\cdot\sqrt{2\cdot\mathbf{g}}\cdot\mathrm{L_w}}
ight)^{rac{2}{3}}$

Open Calculator

 $oxed{ex} 6.599725 \mathrm{m} = \left(rac{91.65 \mathrm{m}^3/\mathrm{s}}{0.407 \cdot \sqrt{2 \cdot 9.8 \mathrm{m/s^2} \cdot 3 \mathrm{m}}}
ight)^{rac{2}{3}}$

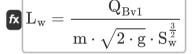

31) Head when Bazin Formula for Discharge if Velocity is not considered

 $\mathbf{S}_{\mathrm{w}} = \left(rac{Q_{\mathrm{Bv1}}}{\mathrm{m}\cdot\sqrt{2\cdot\mathrm{g}}\cdot\mathrm{L}_{\mathrm{w}}}
ight)^{rac{2}{3}}$

Open Calculator 🚰

 $oxed{ex} 2.00093 \mathrm{m} = \left(rac{15.3 \mathrm{m}^3/\mathrm{s}}{0.407 \cdot \sqrt{2 \cdot 9.8 \mathrm{m/s^2}} \cdot 3 \mathrm{m}}
ight)^{rac{2}{3}}$

32) Head when End Contractions is suppressed



Open Calculator

ex $2.952201 \mathrm{m} = \left(\frac{28 \mathrm{m}^3/\mathrm{s}}{1.84 \cdot 3 \mathrm{m}}\right)^{\frac{2}{3}}$

Length of Crest

33) Length given Bazins Formula for Discharge if Velocity is not considered

 $= \frac{15.3 \text{m}^3/\text{s}}{0.407 \cdot \sqrt{2 \cdot 9.8 \text{m/s}^2} \cdot (2\text{m})^{\frac{3}{2}} }$

34) Length of Crest considering Velocity

fx Open Calculator

$$oxed{ egin{aligned} \mathbf{L}_{\mathrm{w}} = \left(rac{3 \cdot \mathbf{Q}_{\mathrm{Fr}^{,}}}{2 \cdot \mathbf{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathbf{g}} \cdot \left(\mathbf{H}_{\mathrm{Stillwater}}^{rac{3}{2}} - \mathbf{H}_{\mathrm{V}}^{rac{3}{2}}
ight)}
ight) + (0.1 \cdot \mathbf{n} \cdot \mathbf{H}_{\mathrm{Stillwater}}) \end{aligned}}$$

$$4.667416m = \left(\frac{3 \cdot 28m^3/s}{2 \cdot 0.66 \cdot \sqrt{2 \cdot 9.8m/s^2} \cdot \left((6.6m)^{\frac{3}{2}} - (4.6m)^{\frac{3}{2}} \right)} \right) + (0.1 \cdot 4 \cdot 6.6m)$$

35) Length of Crest given Discharge Passing over Weir

 $\mathbf{E} \mathbf{L}_{\mathrm{w}} = rac{\mathbf{Q}_{\mathrm{Fr}} \cdot \mathbf{3}}{2 \cdot \mathbf{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathbf{g}} \cdot \left(\left(\mathbf{S}_{\mathrm{w}} + \mathbf{H}_{\mathrm{V}}
ight)^{rac{3}{2}} - \mathbf{H}_{\mathrm{V}}^{rac{3}{2}}
ight)}$

Open Calculator

$$2.027416 \text{m} = \frac{28 \text{m}^3/\text{s} \cdot 3}{2 \cdot 0.66 \cdot \sqrt{2 \cdot 9.8 \text{m/s}^2} \cdot \left((2 \text{m} + 4.6 \text{m})^{\frac{3}{2}} - (4.6 \text{m})^{\frac{3}{2}} \right) }$$

36) Length of Crest when Discharge and Velocity is considered

 $\mathbf{K} egin{align*} \mathbf{L}_{\mathrm{w}} &= rac{\mathbf{Q}_{\mathrm{Fr}},}{1.84 \cdot \left(\mathbf{H}_{\mathrm{Stillweter}}^{rac{3}{2}} - \mathbf{H}_{\mathrm{V}}^{rac{3}{2}}
ight)}, \end{split}$

Open Calculator

$$2.146376 \text{m} = \frac{28 \text{m}^3/\text{s}}{1.84 \cdot \left((6.6 \text{m})^{\frac{3}{2}} - (4.6 \text{m})^{\frac{3}{2}} \right)}$$

37) Length of Crest when Discharge and Velocity is not considered 🗗

 $\mathrm{L_w} = rac{\mathrm{Q_{Fr'}}}{1.84 \cdot \mathrm{H_{Stillwater}^{rac{3}{2}}}}$

$$\boxed{ \textbf{ex} \ 0.897479 \text{m} = \frac{28 \text{m}^3/\text{s}}{1.84 \cdot (6.6 \text{m})^{\frac{3}{2}}} }$$

38) Length of Crest when Francis Formula Discharge and Velocity is considered 🚰

 $\mathbf{L}_{\mathrm{w}} = \left(rac{\mathrm{Q}_{\mathrm{Fr}}}{1.84 \cdot \left(\mathrm{H}_{\mathrm{Stillwater}}^{rac{3}{2}} - \mathrm{H}_{\mathrm{V}}^{rac{3}{2}}
ight)}
ight) + \left(0.1 \cdot \mathrm{n} \cdot \mathrm{H}_{\mathrm{Stillwater}}
ight)$

Open Calculator 🚰

39) Length of Crest when Francis Formula Discharge and Velocity is not considered

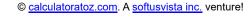
 $\mathbf{L}_{\mathrm{w}} = \left(rac{\mathrm{Q}_{\mathrm{Fr}}}{1.84\cdot\mathrm{S}_{\mathrm{w}}^{rac{3}{2}}}
ight) + \left(0.1\cdot\mathrm{n}\cdot\mathrm{S}_{\mathrm{w}}
ight)$

Open Calculator

 $oxed{ex} 2.337189 \mathrm{m} = \left(rac{8 \mathrm{m}^3 / \mathrm{s}}{1.84 \cdot (2 \mathrm{m})^{rac{3}{2}}}
ight) + (0.1 \cdot 4 \cdot 2 \mathrm{m})$

40) Length of Crest without considering Velocity

 $\mathbf{E} \mathbf{L}_{\mathrm{w}} = \left(rac{\mathrm{Q}_{\mathrm{Fr}} \cdot 2}{3 \cdot \mathrm{C}_{\mathrm{d}} \cdot \sqrt{2 \cdot \mathrm{g}}}
ight)^{rac{2}{3}} + (0.1 \cdot \mathrm{n} \cdot \mathrm{S}_{\mathrm{w}})$


Open Calculator 🗗

41) Length when Bazins formula for Discharge if Velocity is considered

 $L_{w} = rac{Q_{Bv}}{m \cdot \sqrt{2 \cdot g} \cdot H_{Q_{t;ill_{wind to w}}}^{rac{3}{2}}}$

Open Calculator

Variables Used

- **b** Width of Channel1 (Meter)
- C_d Coefficient of Discharge
- **d**_f Depth of Flow (Meter)
- **g** Acceleration due to Gravity (Meter per Square Second)
- h_{Crest} Height of Crest (Meter)
- HStillwater Still Water Head (Meter)
- **H**_V Velocity Head (Meter)
- k_{Flow} Constant of Flow
- Lw Length of Weir Crest (Meter)
- m Bazins Coefficient
- n Number of End Contraction
- Q' Discharge by Approach Velocity (Cubic Meter per Second)
- Q_{Bv} Bazins Discharge with Velocity (Cubic Meter per Second)
- Q_{Bv1} Bazins Discharge without Velocity (Cubic Meter per Second)
- QFr Francis Discharge (Cubic Meter per Second)
- QFr Francis Discharge with Suppressed End (Cubic Meter per Second)
- S_W Height of Water above Crest of Weir (Meter)
- V Velocity of Flow 1 (Meter per Second)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)

 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s)

 Speed Unit Conversion
- Measurement: Acceleration in Meter per Square Second (m/s²)
 Acceleration Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)

 Volumetric Flow Rate Unit Conversion

Check other formula lists

- Broad Crested Weir Formulas
- Flow Over a Trapizoidal and Triangular Weir or Notch Formulas
- Flow Over Rectangular Sharp Crested Weir or Notch Formulas
- Submerged Weirs Formulas
- Time Required to Empty a Reservoir with Rectangular Weir Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

8/9/2024 | 6:52:28 AM UTC

Please leave your feedback here...

