



# Water Demand and Quantity Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...





## List of 31 Water Demand and Quantity Formulas

### Water Demand and Quantity

## Determination of Population For Inter Censal and Post Censal Years

1) Constant Factor given Population at Last Census

 $\left| \mathbf{K}_{\mathrm{A}} 
ight| \mathrm{K}_{\mathrm{A}} = rac{\mathrm{P_L} - \mathrm{P_E}}{\mathrm{T_L} - \mathrm{T_F}}$ 

Open Calculator

$$= 1.99 = \frac{20.01 - 22}{19 - 20}$$

2) Earlier Census Date given Constant Factor

$$egin{aligned} \mathbf{T}_{\mathrm{E}} = \mathbf{T}_{\mathrm{L}} - \left(rac{\mathrm{P}_{\mathrm{L}} - \mathrm{P}_{\mathrm{E}}}{\mathrm{K}_{\mathrm{A}}}
ight) \end{aligned}$$

Open Calculator

$$\boxed{ 19.995 = 19 - \left( \frac{20.01 - 22}{2} \right) }$$



### 3) Earlier Census Date given Proportionality Factor 🗗

$$ag{T_{
m E} = T_{
m L} - \left(rac{\log({
m P_L},e) - \log({
m P_E},e)}{{
m K_G}}
ight)}$$

Open Calculator 2

ex  $18.65876 = 19 - \left( rac{\log(20.01, e) - \log(22, e)}{0.03} 
ight)$ 

Open Calculator

Open Calculator

Open Calculator

4) Last Census Date given Constant Factor 
$$\Gamma$$
  $\Gamma_{\rm L} = T_{\rm E} + \left(\frac{P_{\rm L} - P_{\rm E}}{K_{\Lambda}}\right)$ 



## 5) Last Census Date given Proportionality Factor 🗹

$$T_{
m L}=T_{
m E}+\left(rac{\log({
m P_L},e)-\log({
m P_E},e)}{{
m K_G}}
ight)$$
 ex  $20.34124=20+\left(rac{\log(20.01,e)-\log(22,e)}{0.03}
ight)$ 

$$ag{P_{
m E} = P_{
m L} - K_{
m A} \cdot (T_{
m L} - T_{
m E})}$$

$$\texttt{ex} \ 22.01 = 20.01 - 2 \cdot (19 - 20)$$



### 7) Population at Last Census

fx  $P_{
m L}=P_{
m E}+{
m K_A}\cdot({
m T_L}-{
m T_E})$ 

Open Calculator 2

 $20 = 22 + 2 \cdot (19 - 20)$ 

8) Population at Last Census given Proportionality Factor

Open Calculator

 $P_{
m L} = \exp((T_{
m L} - T_{
m E}) \cdot {
m K_G} + \log 10(P_{
m E}))$ 

### 9) Proportionality Factor given Population at Last Census

19 - 20

 $ext{K} ext{K}_{ ext{G}} = rac{\log 10( ext{P}_{ ext{L}}) - \log 10( ext{P}_{ ext{E}})}{ ext{T}_{ ext{L}} - ext{T}_{ ext{E}}}$  $= \frac{\log 10(20.01) - \log 10(22)}{0.041176}$  Open Calculator

Arithmetic Increase Method

## 10) Constant Factor for Inter Censal Period 🗗

 $\left| \mathbf{K}_{\mathrm{A}} 
ight| \mathrm{K}_{\mathrm{A}} = rac{\mathrm{P}_{\mathrm{M}} - \mathrm{P}_{\mathrm{E}}}{\mathrm{T}_{\mathrm{M}} - \mathrm{T}_{\mathrm{E}}} \left| 
ight|$ 

Inter Censal Period

Open Calculator

 $2 = \frac{40 - 22}{29 - 20}$ 



### 11) Earlier Census Date for Inter Censal Period

 $\left| \mathbf{T}_{\mathrm{E}} = \mathbf{T}_{\mathrm{M}} - \left( rac{\mathbf{P}_{\mathrm{M}} - \mathbf{P}_{\mathrm{E}}}{\mathbf{K}_{\mathrm{A}}} 
ight) 
ight|$ 

Open Calculator 🗗

 $\boxed{\textbf{ex}} \ 20 = 29 - \left(\frac{40 - 22}{2}\right)$ 

### 12) Mid Year Census Date for Inter Censal Period

 $\mathbf{T}_{\mathrm{M}} = \left(rac{\mathrm{P_{\mathrm{M}}} - \mathrm{P_{\mathrm{E}}}}{\mathrm{K_{\Lambda}}}
ight) + \mathrm{T_{\mathrm{E}}}$ 

Open Calculator

 $\boxed{29 = \left(\frac{40 - 22}{2}\right) + 20}$ 

### 13) Population at Earlier Census for Inter Censal Period

 $m{\kappa} \left[ ext{P}_{ ext{E}} = ext{P}_{ ext{M}} - ext{K}_{ ext{A}} \cdot \left( ext{T}_{ ext{M}} - ext{T}_{ ext{E}} 
ight) 
ight]$ 

Open Calculator 🗗

 $\boxed{22 = 40 - 2 \cdot (29 - 20)}$ 

### 14) Population at Mid Year

 $oldsymbol{P}_{
m M} = P_{
m E} + K_{
m A} \cdot (T_{
m M} - T_{
m E})$ 

Open Calculator

 $\boxed{ 40 = 22 + 2 \cdot (29 - 20) }$ 



Open Calculator

Open Calculator

## Post Censal Period

### 15) Constant Factor for Post Censal Period

 $oldsymbol{ ext{K}} egin{equation} ext{K}_{ ext{A}} = rac{ ext{P}_{ ext{M}} - ext{P}_{ ext{L}}}{ ext{T}_{ ext{M}} - ext{T}_{ ext{L}}} \end{split}$ 

D1

 $1.999 = \frac{40 - 20.01}{29 - 19}$ 

## 16) Last Census Date for Post Censal Period

 $ag{T_L = T_M - \left(rac{P_M - P_L}{K_A}
ight)}$ 

 $\boxed{ 19.005 = 29 - \left( \frac{40 - 20.01}{2} \right) }$ 

17) Mid Year Census Date for Post Censal Period

 $\mathbf{T}_{\mathrm{M}} = \mathbf{T}_{\mathrm{L}} + \left(rac{\mathrm{P}_{\mathrm{M}} - \mathrm{P}_{\mathrm{L}}}{\mathrm{K}_{\mathrm{A}}}
ight)$ 

18) Population at Last Census for Post Censal Period 🖒

- $ag{P_{
  m L} = P_{
  m M} K_{
  m A} \cdot (T_{
  m M} T_{
  m L})}$ 
  - $20 = 40 2 \cdot (20 10)$

 $20 = 40 - 2 \cdot (29 - 19)$ 



© <u>calculatoratoz.com</u>. A <u>softusvista inc.</u> venture!



Open Calculator





19) Population at Mid Year for Post Censal Period  $oldsymbol{oldsymbol{oldsymbol{oldsymbol{A}}}}$  fx  $P_{M}=P_{L}+K_{A}\cdot(T_{M}-T_{L})$ 

Open Calculator

Geometric Increase Method

Inter Censal Period 🖸

20) Earlier Census Date for Geometric Increase Mo

20) Earlier Census Date for Geometric Increase Method

 $T_{\rm E}=T_{
m M}-\left(rac{\log 10(P_{
m M})-\log 10(P_{
m E})}{K_{
m G}}
ight)$  ex  $20.34542=29-\left(rac{\log 10(40)-\log 10(22)}{0.03}
ight)$ 

Open Calculator 🗗

21) Mid Year Census Date for Geometric Increase Method 🗗

2.7 mild Teal Gensus Date for Geometric increase Method

 $T_{
m M}=T_{
m E}+\left(rac{\log 10({
m P_M})-\log 10({
m P_E})}{{
m K_G}}
ight)$ 

Open Calculator 🗗

ex  $28.65458 = 20 + \left( \frac{\log 10(40) - \log 10(22)}{0.03} \right)$ 

22) Population at Earlier Census for Geometric Increase Method

 $ext{FE} = \exp(\log 10( ext{P}_{ ext{M}}) - ext{K}_{ ext{G}} \cdot ( ext{T}_{ ext{M}} - ext{T}_{ ext{E}}))$ 

Open Calculator



© <u>calculatoratoz.com</u>. A <u>softusvista inc.</u> venture!



### 23) Population at Mid Year for Geometric Increase Method 🗗

 $\mathbf{E} \left[ \mathrm{P_{M}} = \exp(\log 10 (\mathrm{P_{E}}) + \mathrm{K_{G}} \cdot (\mathrm{T_{M}} - \mathrm{T_{E}})) 
ight]$ 

Open Calculator

 $= 5.014946 = \exp(\log 10(22) + 0.03 \cdot (29 - 20))$ 

24) Proportionality Factor for Geometric Increase Method 🗗 Open Calculator

 $extbf{K}_{ ext{G}} = rac{\log 10( ext{P}_{ ext{M}}) - \log 10( ext{P}_{ ext{E}})}{ ext{T}_{ ext{M}} - ext{T}_{ ext{E}}}$ 

 $\boxed{ \begin{array}{c} \textbf{ex} \\ 0.028849 = \frac{\log 10(40) - \log 10(22)}{29 - 20} \end{array} }$ 

### Post Censal Period

### 25) Last Census Date for Geometric Increase Method Post Censal 🖸

Open Calculator

 $egin{aligned} \mathbf{K} \mathbf{T}_{\mathrm{L}} = \mathbf{T}_{\mathrm{M}} - \left(rac{\log 10(\mathrm{P_{\mathrm{M}}}) - \log 10(\mathrm{P_{\mathrm{L}}})}{\mathrm{K_{\mathrm{C}}}}
ight) \end{aligned}$ 

ex  $18.9729 = 29 - \left(\frac{\log 10(40) - \log 10(20.01)}{0.03}\right)$ 

### 26) Mid Year Census Date for Geometric Increase Method Post Censal 🗗

 $egin{aligned} \mathbf{T}_{\mathrm{M}} = \mathrm{T_L} + \left(rac{\log 10(\mathrm{P_M}) - \log 10(\mathrm{P_L})}{\mathrm{K_G}}
ight) \end{aligned}$ 

Open Calculator

 $extbf{ex} 29.0271 = 19 + \left( rac{\log 10(40) - \log 10(20.01)}{0.03} 
ight)$ 





### 27) Population at Earlier Census given Proportionality Factor 🗗

 $\mathbf{E} \left[ \mathrm{P_E} = \exp(\log 10 (\mathrm{P_L}) - (\mathrm{T_L} - \mathrm{T_E}) \cdot \mathrm{K_G}) 
ight]$ 

Open Calculator 2

Open Calculator

(20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.01) = (20.

 $\mathbf{E} \left[ \mathrm{P_L} = \exp(\log 10 (\mathrm{P_M}) - \mathrm{K_G} \cdot (\mathrm{T_M} - \mathrm{T_L})) 
ight]$ 

### 28) Population at Last Census for Geometric Increase Method Post Censal

### 29) Population at Mid Year for Geometric Increase Method Post Censal

$$ag{P_{
m M}} = \exp(\log 10({
m P_L}) + {
m K_G} \cdot ({
m T_M} - {
m T_L}))$$
 Open Calculator  $m{\mathcal{C}}$ 

### 30) Proportionality Factor for Geometric Increase Method Post Censal

$$K_{
m G}=rac{\log 10(P_{
m M})-\log 10(P_{
m L})}{T_{
m M}-T_{
m L}}$$
 Open Calculator  $G$ 

 $= \frac{\log 10(40) - \log 10(20.01)}{0.030081}$ 

29 - 19



### Variation In Rate of Demand

### 31) Percentage of Annual Average Consumption by Goodrich Formula







### Variables Used

- APR Annual Percentage Rate
- K<sub>▲</sub> Constant Factor
- K<sub>G</sub> Proportionality Factor
- PE Population at Earlier Census
- PI Population at Last Census
- P<sub>M</sub> Population at Mid Year Census
- t Time in days (Day)
- TE Earlier Census Date
- T<sub>I</sub> Last Census Date
- T<sub>M</sub> Mid-Year Census Date





### Constants, Functions, Measurements used

- Constant: e, 2.71828182845904523536028747135266249
   Napier's constant
- Function: exp, exp(Number)

  n an exponential function, the value of the function changes by a constant factor for every unit change in the independent variable.
- Function: log, log(Base, Number)
   Logarithmic function is an inverse function to exponentiation.
- Function: log10, log10(Number)

  The common logarithm, also known as the base-10 logarithm or the decimal logarithm, is a mathematical function that is the inverse of the exponential function.
- Measurement: Time in Day (d)
   Time Unit Conversion





### Check other formula lists

- Design of a Chlorination System
   Disposing of the Sewage for Wastewater Disinfection Formulas
- **Design of a Circular Settling Tank** Formulas
- **Design of a Plastic Media** Trickling Filter Formulas
- Design of a Solid Bowl Centrifuge. Noise Pollution Formulas for Sludge Dewatering Formulas
- · Design of an Aerated Grit Chamber Formulas
- Design of an Aerobic Digester Formulas
- Design of an Anaerobic Digester Formulas
- Design of Rapid Mix Basin and Flocculation Basin Formulas
- **Design of Trickling Filter using** NRC Equations Formulas

- Effluents Formulas
- **Estimating the Design Sewage** Discharge Formulas
- Fire Demand Formulas
- Flow Velocity in Straight Sewers Formulas
- Population Forecast Method Formulas 6
- Quality and Characteristics of Sewage Formulas
- Sanitary System Sewer Design Formulas Co
- **Sewers their Construction. Maintenance and Required** Appurtenances Formulas
- Sizing a Polymer Dilution or Feed System Formulas
- Water Demand and Quantity Formulas C

Feel free to SHARE this document with your friends!

### PDF Available in





English Spanish French German Russian Italian Portuguese Polish Dutch

8/27/2024 | 6:08:21 AM UTC

Please leave your feedback here...



