

Rainfall Infiltration Method Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 43 Rainfall Infiltration Method Formulas

Rainfall Infiltration Method (

1) Catchment Area when Recharge from Rainfall is Considered 🗗

Open Calculator

$$\mathbf{A}_{
m cr} = rac{\mathrm{R}_{
m rfm}}{\mathrm{f} \cdot \mathrm{P}_{
m nm}}$$

ex
$$13.25758 ext{m}^2 = rac{7 ext{m}^3/ ext{s}}{22\cdot 0.024 ext{m}}$$

2) Normal Rainfall in Monsoon Season 🖸

3) Rainfall Infiltration Factor when Recharge from Rainfall is Considered

$$\mathbf{f} \mathbf{f} = rac{R_{rfm}}{A_{cr} \cdot P_{nm}}$$

$$ext{ex} 21.92982 = rac{7 ext{m}^3/ ext{s}}{13.3 ext{m}^2 \cdot 0.024 ext{m}}$$

4) Recharge from Rainfall in Monsoon Season by Rainfall Infiltration Method

Open Calculator

 $ext{ex} 7.0224 ext{m}^3/ ext{s} = 22 \cdot 13.3 ext{m}^2 \cdot 0.024 ext{m}$

Maximum value of Rainfall Factor for Various Hydrogeologic Conditions based on the Norms

5) Recharge from Rainfall in Alluvial East Coast Areas for Known Maximum Rainfall Factor

Open Calculator 🗗

 $ext{ex} 5.7456 ext{m}^3/ ext{s} = 18 \cdot 13.3 ext{m}^2 \cdot 0.024 ext{m}$

6) Recharge from Rainfall in Alluvial Indo Gangetic and Inland Areas for Known Max Rainfall Factor

fx $m R_{ai} = 25 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

 $ext{ex} 7.98 ext{m}^3/ ext{s} = 25 \cdot 13.3 ext{m}^2 \cdot 0.024 ext{m}$

7) Recharge from Rainfall in Alluvial West Coast Areas for Known Maximum Rainfall Factor

 $\mathbf{K} \left[\mathrm{R}_{\mathrm{awc}} = 12 \cdot \mathrm{A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}
ight]$

Open Calculator

ex $3.8304 \mathrm{m}^3/\mathrm{s} = 12 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

8) Recharge from Rainfall in Hard Rock Areas with Consolidated Sandstone for Maximum Rainfall Factor

Open Calculator 🗗

ex $2.5536 \mathrm{m}^3/\mathrm{s} = 8 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

9) Recharge from Rainfall in Hard Rock Areas with Granulite Facies for Known Rainfall Factor

fx $m [R_{hra} = 6 \cdot A_{cr} \cdot P_{nm}]$

Open Calculator

ex $1.9152 \mathrm{m}^3/\mathrm{s} = 6 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

10) Recharge from Rainfall in Hard Rock Areas with Laterite for Known Maximum Rainfall Factor

fx $m R_{hrl} = 14 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

 $ext{ex} \ 4.4688 ext{m}^3/ ext{s} = 14 \cdot 13.3 ext{m}^2 \cdot 0.024 ext{m}$

11) Recharge from Rainfall in Hard Rock Areas with Low Clay Content for Known Rainfall Factor

fx $m R_{hrc} = 12 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

ex $3.8304 \mathrm{m}^3/\mathrm{s} = 12 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

12) Recharge from Rainfall in Hard Rock Areas with Massive Poorly Fractured Rocks

 $m x R_{hra} = 7 \cdot A_{cr} \cdot P_{nm}$

Open Calculator 🖸

ex $2.2344 \mathrm{m}^3/\mathrm{s} = 7 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}^3$

13) Recharge from Rainfall in Hard Rock Areas with Phyllites, Shales for Known Max Rainfall Factor

fx $R_{hrp} = 14 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

ex $4.4688 \mathrm{m}^3/\mathrm{s} = 14 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

14) Recharge from Rainfall in Hard Rock Areas with Semi Consolidated Sandstone for Max Rainfall Factor

fx $m R_{hra} = 8 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

ex $2.5536 \mathrm{m}^3/\mathrm{s} = 8 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

15) Recharge from Rainfall in Hard Rock Areas with Significant Clay Content for Known Rainfall Factor

fx $m R_{hra} = 9 \cdot A_{cr} \cdot P_{nm}$

Open Calculator 🗗

ex $2.8728 \mathrm{m}^3/\mathrm{s} = 9 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

16) Recharge from Rainfall in Hard Rock Areas with Vesicular and Jointed Basalt for Max Rainfall Factor

Open Calculator

ex $2.8728 \mathrm{m}^3/\mathrm{s} = 9 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

17) Recharge from Rainfall in Hard Rock Areas with Weathered Basalt for Known Maximum Rainfall Factor

fx $m [R_{hra} = 6 \cdot A_{cr} \cdot P_{nm}]$

Open Calculator

ex $1.9152 \mathrm{m}^3/\mathrm{s} = 6 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

Minimum Value of Rainfall Factor for Various Hydrogeologic Conditions based on the Norms

18) Recharge from Rainfall in Hard Rock Areas consisting Vesicular and Jointed Basalt

fx $R_{hrv} = 5 \cdot A_{cr} \cdot P_{nm}$

Open Calculator 🗗

= 1.596 $\mathrm{m}^{_{3}}/\mathrm{s} = 5\cdot 13.3\mathrm{m}^{_{2}}\cdot 0.024\mathrm{m}$

19) Recharge from Rainfall in Hard Rock Areas consisting Weathered Basalt

fx $m [R_{wb} = 4 \cdot A_{cr} \cdot P_{nm}]$

Open Calculator

ex $1.2768 \mathrm{m}^3/\mathrm{s} = 4 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

20) Recharge from Rainfall in Hard Rock Areas of Massive Poorly Fractured Rocks

fx $m R_{fr} = 5 \cdot A_{cr} \cdot P_{nm}$

Open Calculator 🗗

ex $1.596 \mathrm{m}^3/\mathrm{s} = 5 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

21) Recharge from Rainfall in Hard Rock Areas of Significant Clay content for Known Min Rainfall Factor

fx $R_{hra} = 8 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

 $ext{ex} \ 2.5536 ext{m}^3/ ext{s} = 8 \cdot 13.3 ext{m}^2 \cdot 0.024 ext{m}$

22) Recharge from Rainfall in Hard Rock Areas with Consolidated Sandstone

fx $m R_{ss} = 6 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

 $ext{ex} \left[1.9152 ext{m}^3/ ext{s} = 6 \cdot 13.3 ext{m}^2 \cdot 0.024 ext{m}
ight]$

23) Recharge from Rainfall in Hard Rock Areas with Granulite Facies for Known Minimum Rainfall Factor

fx $m R_{gf} = 4 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

ex $1.2768 \mathrm{m}^3/\mathrm{s} = 4 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

24) Recharge from Rainfall in Hard Rock Areas with Laterite for Known Min Rainfall Factor

fx $m R_{hra} = 12 \cdot A_{cr} \cdot P_{nm}$

Open Calculator 🗗

ex $3.8304 \mathrm{m}^3/\mathrm{s} = 12 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

25) Recharge from Rainfall in Hard Rock Areas with Low Clay content for Known Minimum Rainfall Factor

fx $R_{hra} = 10 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

ex $3.192 \mathrm{m}^3/\mathrm{s} = 10 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

26) Recharge from Rainfall in Hard Rock Areas with Phyllites, Shales given Min Rainfall Factor

fx $m [R_{hra} = 10 \cdot A_{cr} \cdot P_{nm}]$

Open Calculator 🗗

ex $3.192 ext{m}^3/ ext{s} = 10 \cdot 13.3 ext{m}^2 \cdot 0.024 ext{m}$

27) Recharge from Rainfall in Hard Rock Areas with Semi Consolidated Sandstone for Min Rainfall Factor

fx $m R_{ss} = 6 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

ex $1.9152 \mathrm{m}^3/\mathrm{s} = 6 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

28) Recharge from Rainfall in Indo Gangetic and Inland Alluvial Areas for Known Minimum Rainfall Factor

Open Calculator

ex $6.384 \mathrm{m}^3/\mathrm{s} = 20 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

29) Recharge from Rainfall in Silty Alluvial Areas for Known Minimum Rainfall Factor

fx $R=20\cdot A_{cr}\cdot P_{nm}$

Open Calculator

 $ext{ex} \ 6.384 ext{m}^3/ ext{s} = 20 \cdot 13.3 ext{m}^2 \cdot 0.024 ext{m}$

30) Recharge from Rainfall in West Coast Alluvial Areas for Known Minimum Rainfall Factor

 $m_{Rawc} = 8 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

ex $2.5536 \mathrm{m}^3/\mathrm{s} = 8 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

Recommended Value for Rainfall Factor for Various Hydrogeologic Conditions based on Norms 🗗

31) Recharge from Rainfall in Alluvial Indo Gangetic and Inland Areas

Open Calculator

ex $7.0224 \mathrm{m}^3/\mathrm{s} = 22 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

$R_{ m aec} = 16 \cdot A_{ m cr} \cdot P_{ m nm}$

Open Calculator

 $\mathbf{ex} \ 5.1072 \mathrm{m}^3/\mathrm{s} = 16 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

33) Recharge from Rainfall in Hard Rock Areas consisting Massive Poorly Fractured Rocks

32) Recharge from Rainfall in East Coast Alluvial Areas 🗗

fx $m R_{fr} = 6 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

ex $1.9152 \mathrm{m}^3/\mathrm{s} = 6 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

34) Recharge from Rainfall in Hard Rock Areas of Consolidated Sandstone

fx $m R_{ss} = 7 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

 $\mathbf{ex} \ 2.2344 \mathrm{m}^3/\mathrm{s} = 7 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}^3$

35) Recharge from Rainfall in Hard Rock Areas with Granulite Facies

fx $m [R_{gf} = 5 \cdot A_{cr} \cdot P_{nm}]$

Open Calculator

ex $1.596 \mathrm{m}^3/\mathrm{s} = 5 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

36) Recharge from Rainfall in Hard Rock Areas with Laterite

fx $m R_{hrl} = 13 \cdot A_{cr} \cdot P_{nm}$

Open Calculator 🖸

 $[4.1496 ext{m}^3/ ext{s} = 13 \cdot 13.3 ext{m}^2 \cdot 0.024 ext{m}]$

37) Recharge from Rainfall in Hard Rock Areas with Low Clav Content

Open Calculator 🚰

ex $3.5112 \mathrm{m}^3/\mathrm{s} = 11 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

 $m{\kappa} m{
m R_{hrp} = 12 \cdot A_{cr} \cdot P_{nm}}$

Open Calculator

ex $3.8304 \mathrm{m}^3/\mathrm{s} = 12 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

39) Recharge from Rainfall in Hard Rock Areas with Semi Consolidated Sandstone

fx $m R_{ss} = 7 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

ex $2.2344 \mathrm{m}^3/\mathrm{s} = 7 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

40) Recharge from Rainfall in Hard Rock Areas with Significant Clay

fx $m R_{hra} = 8 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

 $ext{ex} \left[2.5536 ext{m}^3/ ext{s} = 8 \cdot 13.3 ext{m}^2 \cdot 0.024 ext{m}
ight]$

41) Recharge from Rainfall in Hard Rock Areas with Vesicular and Jointed Basalt

fx $m R_{hra} = 8 \cdot A_{cr} \cdot P_{nm}$

Open Calculator

 $= 2.5536 \mathrm{m}^3/\mathrm{s} = 8 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

42) Recharge from Rainfall in Hard Rock Areas with Weathered Basalt

fx $m R_{wb} = 5 \cdot A_{cr} \cdot P_{nm}$

Open Calculator 🗗

ex $1.596 \mathrm{m}^3/\mathrm{s} = 5 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

43) Recharge from Rainfall in West Coast Areas based on Recommended Rainfall Infiltration Factor

ex $3.192 \mathrm{m}^3/\mathrm{s} = 10 \cdot 13.3 \mathrm{m}^2 \cdot 0.024 \mathrm{m}$

Variables Used

- A_{cr} Area of Computation for Recharge (Square Meter)
- f Rainfall Infiltration Factor
- P_{nm} Normal Rainfall in Monsoon Season (Meter)
- R Recharge from Rainfall (Cubic Meter per Second)
- Raec Recharge from Rainfall in Alluvial East Coast (Cubic Meter per Second)
- Rai Recharge from Rainfall in Alluvial Indo (Cubic Meter per Second)
- R_{awc} Recharge from Rainfall in Alluvial West Coast (Cubic Meter per Second)
- R_{fr} Rainfall Recharge in Hard Rock Poorly Fractured (Cubic Meter per Second)
- R_{gf} Rainfall Recharge in Hard Rock Granulite Facies (Cubic Meter per Second)
- R_{hra} Recharge from Rainfall in Hard Rock Areas (Cubic Meter per Second)
- Recharge from Rainfall in Hard Rock Low Clay (Cubic Meter per Second)
- Rhrl Recharge from Rainfall in Hard Rock Laterite (Cubic Meter per Second)
- R_{hrp} Recharge from Rainfall in Hard Rock Phyllites (Cubic Meter per Second)
- Rhrv Recharge from Rainfall in Hard Rock Vesicular (Cubic Meter per Second)

- R_{rfm} Recharge from Rainfall in Monsoon Season (Cubic Meter per Second)
- R_{SS} Rainfall Recharge in Hard Rock Sandstone (Cubic Meter per Second)
- R_{wb} Rainfall Recharge in Hard Rock Weathered Basalt (Cubic Meter per Second)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m)

 Length Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)

 Volumetric Flow Rate Unit Conversion

Check other formula lists

 Rainfall Infiltration Method Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

6/21/2024 | 7:12:01 AM UTC

Please leave your feedback here...

