
calculatoratoz.com

0

Rainfall Infiltration Method Formulas

Widest Coverage of Calculators and Growing-30,000+ Calculators! Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 43 Rainfall Infiltration Method Formulas

Rainfall Infiltration Method ©

1) Catchment Area when Recharge from Rainfall is Considered
$f \times \mathrm{A}_{\mathrm{cr}}=\frac{\mathrm{R}_{\mathrm{rfm}}}{\mathrm{f} \cdot \mathrm{P}_{\mathrm{nm}}}$
Open Calculator
ex $13.25758 \mathrm{~m}^{2}=\frac{7 \mathrm{~m}^{3} / \mathrm{s}}{22 \cdot 0.024 \mathrm{~m}}$
2) Normal Rainfall in Monsoon Season
f. $\mathrm{P}_{\mathrm{nm}}=\frac{\mathrm{R}_{\mathrm{rfm}}}{\mathrm{f} \cdot \mathrm{A}_{\mathrm{cr}}}$

Open Calculator
ex $0.023923 \mathrm{~m}=\frac{7 \mathrm{~m}^{3} / \mathrm{s}}{22 \cdot 13.3 \mathrm{~m}^{2}}$
3) Rainfall Infiltration Factor when Recharge from Rainfall is Considered U
$\mathrm{fx} f=\frac{\mathrm{R}_{\mathrm{rfm}}}{\mathrm{A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}}$
Open Calculator
ex $21.92982=\frac{7 \mathrm{~m}^{3} / \mathrm{s}}{13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}}$
4) Recharge from Rainfall in Monsoon Season by Rainfall Infiltration Method
$f \mathrm{f} \mathrm{R}_{\mathrm{rfm}}=\mathrm{f} \cdot \mathrm{A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $7.0224 \mathrm{~m}^{3} / \mathrm{s}=22 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
Maximum value of Rainfall Factor for Various Hydrogeologic Conditions based on the Norms [
5) Recharge from Rainfall in Alluvial East Coast Areas for Known Maximum Rainfall Factor
$f \mathrm{fx} \mathrm{R}_{\mathrm{aec}}=18 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $5.7456 \mathrm{~m}^{3} / \mathrm{s}=18 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
6) Recharge from Rainfall in Alluvial Indo Gangetic and Inland Areas for Known Max Rainfall Factor

$$
f x R_{\mathrm{ai}}=25 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}
$$

ex $7.98 \mathrm{~m}^{3} / \mathrm{s}=25 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
7) Recharge from Rainfall in Alluvial West Coast Areas for Known Maximum Rainfall Factor
$f \mathrm{x} \mathrm{R}_{\mathrm{awc}}=12 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $3.8304 \mathrm{~m}^{3} / \mathrm{s}=12 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
8) Recharge from Rainfall in Hard Rock Areas with Consolidated Sandstone for Maximum Rainfall Factor
$f \mathrm{f} \quad \mathrm{R}_{\mathrm{hra}}=8 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $2.5536 \mathrm{~m}^{3} / \mathrm{s}=8 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
9) Recharge from Rainfall in Hard Rock Areas with Granulite Facies for Known Rainfall Factor
$f \mathrm{f} \mathrm{R}_{\mathrm{hra}}=6 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $1.9152 \mathrm{~m}^{3} / \mathrm{s}=6 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
10) Recharge from Rainfall in Hard Rock Areas with Laterite for Known Maximum Rainfall Factor
$f_{\mathrm{x}} \mathrm{R}_{\mathrm{hrl}}=14 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $4.4688 \mathrm{~m}^{3} / \mathrm{s}=14 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
11) Recharge from Rainfall in Hard Rock Areas with Low Clay Content for Known Rainfall Factor
$f \mathrm{fx} \mathrm{R}_{\mathrm{hrc}}=12 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $3.8304 \mathrm{~m}^{3} / \mathrm{s}=12 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
12) Recharge from Rainfall in Hard Rock Areas with Massive Poorly Fractured Rocks
$f \mathrm{f} \mathrm{R}_{\mathrm{hra}}=7 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $2.2344 \mathrm{~m}^{3} / \mathrm{s}=7 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
13) Recharge from Rainfall in Hard Rock Areas with Phyllites, Shales for Known Max Rainfall Factor
$f \mathrm{f} \mathrm{R}_{\mathrm{hrp}}=14 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $4.4688 \mathrm{~m}^{3} / \mathrm{s}=14 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
14) Recharge from Rainfall in Hard Rock Areas with Semi Consolidated Sandstone for Max Rainfall Factor
$f \mathrm{fx} \mathrm{R}_{\mathrm{hra}}=8 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $2.5536 \mathrm{~m}^{3} / \mathrm{s}=8 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
15) Recharge from Rainfall in Hard Rock Areas with Significant Clay Content for Known Rainfall Factor
$f \mathrm{x} \mathrm{R}_{\mathrm{hra}}=9 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $2.8728 \mathrm{~m}^{3} / \mathrm{s}=9 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
16) Recharge from Rainfall in Hard Rock Areas with Vesicular and Jointed Basalt for Max Rainfall Factor
$f \mathrm{f} \mathrm{R}_{\mathrm{hra}}=9 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $2.8728 \mathrm{~m}^{3} / \mathrm{s}=9 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
17) Recharge from Rainfall in Hard Rock Areas with Weathered Basalt for Known Maximum Rainfall Factor
$f \mathrm{f} \mathrm{R}_{\mathrm{hra}}=6 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $1.9152 \mathrm{~m}^{3} / \mathrm{s}=6 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
Minimum Value of Rainfall Factor for Various Hydrogeologic Conditions based on the Norms $\underbrace{2}$
18) Recharge from Rainfall in Hard Rock Areas consisting Vesicular and Jointed Basalt
$f \mathrm{f} \mathrm{R}_{\mathrm{hrv}}=5 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $1.596 \mathrm{~m}^{3} / \mathrm{s}=5 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
19) Recharge from Rainfall in Hard Rock Areas consisting Weathered Basalt
$f \mathrm{x} \mathrm{R}_{\mathrm{wb}}=4 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $1.2768 \mathrm{~m}^{3} / \mathrm{s}=4 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
20) Recharge from Rainfall in Hard Rock Areas of Massive Poorly Fractured Rocks
$\mathrm{fx} \mathrm{R}_{\mathrm{fr}}=5 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $1.596 \mathrm{~m}^{3} / \mathrm{s}=5 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
21) Recharge from Rainfall in Hard Rock Areas of Significant Clay content for Known Min Rainfall Factor
$f \mathbf{x} R_{\text {hra }}=8 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $2.5536 \mathrm{~m}^{3} / \mathrm{s}=8 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
22) Recharge from Rainfall in Hard Rock Areas with Consolidated Sandstone
$f \mathrm{fx} \mathrm{R}_{\mathrm{ss}}=6 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $1.9152 \mathrm{~m}^{3} / \mathrm{s}=6 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
23) Recharge from Rainfall in Hard Rock Areas with Granulite Facies for Known Minimum Rainfall Factor
$\mathrm{fx} \mathrm{R}_{\mathrm{gf}}=4 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $1.2768 \mathrm{~m}^{3} / \mathrm{s}=4 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
24) Recharge from Rainfall in Hard Rock Areas with Laterite for Known Min Rainfall Factor

$f \mathrm{f} \mathrm{R}_{\mathrm{hra}}=12 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $3.8304 \mathrm{~m}^{3} / \mathrm{s}=12 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
25) Recharge from Rainfall in Hard Rock Areas with Low Clay content for Known Minimum Rainfall Factor \mathcal{L}
$f \mathrm{f} \mathrm{R}_{\mathrm{hra}}=10 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $3.192 \mathrm{~m}^{3} / \mathrm{s}=10 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
26) Recharge from Rainfall in Hard Rock Areas with Phyllites, Shales given Min Rainfall Factor
$\mathrm{fx} \mathrm{R}_{\mathrm{hra}}=10 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $3.192 \mathrm{~m}^{3} / \mathrm{s}=10 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
27) Recharge from Rainfall in Hard Rock Areas with Semi Consolidated Sandstone for Min Rainfall Factor
$\mathrm{fx}_{\mathrm{x}} \mathrm{R}_{\mathrm{ss}}=6 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $1.9152 \mathrm{~m}^{3} / \mathrm{s}=6 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
28) Recharge from Rainfall in Indo Gangetic and Inland Alluvial Areas for Known Minimum Rainfall Factor
$\mathrm{fx} \mathrm{R}=20 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $6.384 \mathrm{~m}^{3} / \mathrm{s}=20 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
29) Recharge from Rainfall in Silty Alluvial Areas for Known Minimum Rainfall Factor
$\mathrm{fx} \mathrm{R}=20 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $6.384 \mathrm{~m}^{3} / \mathrm{s}=20 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
30) Recharge from Rainfall in West Coast Alluvial Areas for Known Minimum Rainfall Factor
$\mathrm{fx} \mathrm{R}_{\mathrm{awc}}=8 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $2.5536 \mathrm{~m}^{3} / \mathrm{s}=8 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
Recommended Value for Rainfall Factor for Various Hydrogeologic Conditions based on Norms
31) Recharge from Rainfall in Alluvial Indo Gangetic and Inland Areas
$f \times R_{\text {ai }}=22 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $7.0224 \mathrm{~m}^{3} / \mathrm{s}=22 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
32) Recharge from Rainfall in East Coast Alluvial Areas \longleftarrow
$f \mathbf{x} \mathrm{R}_{\mathrm{aec}}=16 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $5.1072 \mathrm{~m}^{3} / \mathrm{s}=16 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
33) Recharge from Rainfall in Hard Rock Areas consisting Massive Poorly Fractured Rocks
$\mathrm{fx} \mathrm{R}_{\mathrm{fr}}=6 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $1.9152 \mathrm{~m}^{3} / \mathrm{s}=6 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
34) Recharge from Rainfall in Hard Rock Areas of Consolidated Sandstone E
$f \mathrm{f} \mathrm{R}_{\mathrm{ss}}=7 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $2.2344 \mathrm{~m}^{3} / \mathrm{s}=7 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
35) Recharge from Rainfall in Hard Rock Areas with Granulite Facies
$f \mathrm{fx} \mathrm{R}_{\mathrm{gf}}=5 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $1.596 \mathrm{~m}^{3} / \mathrm{s}=5 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
36) Recharge from Rainfall in Hard Rock Areas with Laterite
$f \mathbf{f} \mathrm{R}_{\mathrm{hrl}}=13 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $4.1496 \mathrm{~m}^{3} / \mathrm{s}=13 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
37) Recharge from Rainfall in Hard Rock Areas with Low Clay Content
$f \mathbf{f} \mathrm{R}_{\mathrm{hrc}}=11 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$

Open Calculator

ex $3.5112 \mathrm{~m}^{3} / \mathrm{s}=11 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
38) Recharge from Rainfall in Hard Rock Areas with Phyllites, Shales
$f \mathrm{fx} \mathrm{R}_{\mathrm{hrp}}=12 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $3.8304 \mathrm{~m}^{3} / \mathrm{s}=12 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
39) Recharge from Rainfall in Hard Rock Areas with Semi Consolidated Sandstone
$f \mathrm{f} \mathrm{R}_{\mathrm{ss}}=7 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
Open Calculator
ex $2.2344 \mathrm{~m}^{3} / \mathrm{s}=7 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
40) Recharge from Rainfall in Hard Rock Areas with Significant Clay Content
$f \mathrm{f} \quad \mathrm{R}_{\mathrm{hra}}=8 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $2.5536 \mathrm{~m}^{3} / \mathrm{s}=8 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
41) Recharge from Rainfall in Hard Rock Areas with Vesicular and Jointed Basalt \boxed{Z}
$f x \mathrm{R}_{\mathrm{hra}}=8 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $2.5536 \mathrm{~m}^{3} / \mathrm{s}=8 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$
42) Recharge from Rainfall in Hard Rock Areas with Weathered Basalt

$\mathrm{fx}_{\mathrm{x}} \mathrm{R}_{\mathrm{wb}}=5 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$

ex $1.596 \mathrm{~m}^{3} / \mathrm{s}=5 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$

43) Recharge from Rainfall in West Coast Areas based on Recommended Rainfall Infiltration Factor
$f \mathrm{f} \mathrm{R}_{\mathrm{awc}}=10 \cdot \mathrm{~A}_{\mathrm{cr}} \cdot \mathrm{P}_{\mathrm{nm}}$
ex $3.192 \mathrm{~m}^{3} / \mathrm{s}=10 \cdot 13.3 \mathrm{~m}^{2} \cdot 0.024 \mathrm{~m}$

Variables Used

- $\mathbf{A}_{\mathbf{c r}}$ Area of Computation for Recharge (Square Meter)
- f Rainfall Infiltration Factor
- \mathbf{P}_{nm} Normal Rainfall in Monsoon Season (Meter)
- R Recharge from Rainfall (Cubic Meter per Second)
- $\mathbf{R}_{\text {aec }}$ Recharge from Rainfall in Alluvial East Coast (Cubic Meter per Second)
- $\mathbf{R}_{\mathbf{a i}}$ Recharge from Rainfall in Alluvial Indo (Cubic Meter per Second)
- $\mathbf{R a w c}_{\text {aw }}$ Recharge from Rainfall in Alluvial West Coast (Cubic Meter per Second)
- \mathbf{R}_{fr} Rainfall Recharge in Hard Rock Poorly Fractured (Cubic Meter per Second)
- $\mathbf{R}_{\mathbf{g f}}$ Rainfall Recharge in Hard Rock Granulite Facies (Cubic Meter per Second)
- $\mathbf{R}_{\text {hra }}$ Recharge from Rainfall in Hard Rock Areas (Cubic Meter per Second)
- $\mathbf{R}_{\text {hrc }}$ Recharge from Rainfall in Hard Rock Low Clay (Cubic Meter per Second)
- $\mathbf{R}_{\text {hrl }}$ Recharge from Rainfall in Hard Rock Laterite (Cubic Meter per Second)
- $\mathbf{R}_{\text {hrp }}$ Recharge from Rainfall in Hard Rock Phyllites (Cubic Meter per Second)
- $\mathbf{R}_{\text {hrv }}$ Recharge from Rainfall in Hard Rock Vesicular (Cubic Meter per Second)
- $\mathbf{R}_{\mathrm{rfm}}$ Recharge from Rainfall in Monsoon Season (Cubic Meter per Second)
- $\mathbf{R}_{\mathbf{s s}}$ Rainfall Recharge in Hard Rock Sandstone (Cubic Meter per Second)
- \mathbf{R}_{wb} Rainfall Recharge in Hard Rock Weathered Basalt (Cubic Meter per Second)

Constants, Functions, Measurements used

- Measurement: Length in Meter (m) Length Unit Conversion
- Measurement: Area in Square Meter (m^{2})

Area Unit Conversion

- Measurement: Volumetric Flow Rate in Cubic Meter per Second ($\mathrm{m}^{3} / \mathrm{s}$) Volumetric Flow Rate Unit Conversion

Check other formula lists

- Rainfall Infiltration Method Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

