

Groundwater Level Fluctuation Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

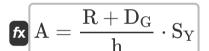
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 21 Groundwater Level Fluctuation Formulas

Groundwater Level Fluctuation


1) Base Flow when Possible Recharge is Considered

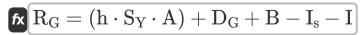
Open Calculator

 $= 5 m^3/s = 45 m^3/s - 70 m^3/s + 12 m^3/s + 18 m^3/s$

2) Catchment Area usually Watershed Area when Possible Recharge is Considered

Open Calculator

 $oxed{egin{aligned} egin{aligned} \mathbf{ex} \ 9.44 \mathrm{m}^2 &= \ rac{70 \mathrm{m}^3 / \mathrm{s} + 10 \mathrm{m}^3 / \mathrm{s}}{5 \mathrm{m}} \cdot 0.59 \end{aligned}}$


3) Equation for Base Flow into Stream from Area

$$oldsymbol{\mathbb{E}} \left[\mathrm{B} = \mathrm{R}_{\mathrm{G}} - \mathrm{D}_{\mathrm{G}} + \mathrm{I}_{\mathrm{s}} + \mathrm{I} - (\mathrm{h} \cdot \mathrm{S}_{\mathrm{Y}} \cdot \mathrm{A})
ight]$$

Open Calculator 🗗

 $6 ext{m}^3/ ext{s} = 45 ext{m}^3/ ext{s} - 10 ext{m}^3/ ext{s} + 18 ext{m}^3/ ext{s} + 12 ext{m}^3/ ext{s} - (5 ext{m} \cdot 0.59 \cdot 20 ext{m}^2)$

4) Equation for Gross Recharge due to Rainfall and other Sources

Open Calculator

 $45 ext{m}^3/ ext{s} = (5 ext{m} \cdot 0.59 \cdot 20 ext{m}^2) + 10 ext{m}^3/ ext{s} + 6 ext{m}^3/ ext{s} - 18 ext{m}^3/ ext{s} - 12 ext{m}^3/ ext{s}$

5) Equation for Gross Water Draft 🗗

 $\left| \mathbf{E} \right| \mathbf{D}_{\mathrm{G}} = \mathbf{R}_{\mathrm{G}} - \mathbf{B} + \mathbf{I}_{\mathrm{s}} + \mathbf{I} - (\mathbf{h} \cdot \mathbf{S}_{\mathrm{Y}} \cdot \mathbf{A})$

Open Calculator

ex $10 \mathrm{m}^3/\mathrm{s} = 45 \mathrm{m}^3/\mathrm{s} - 6 \mathrm{m}^3/\mathrm{s} + 18 \mathrm{m}^3/\mathrm{s} + 12 \mathrm{m}^3/\mathrm{s} - (5 \mathrm{m} \cdot 0.59 \cdot 20 \mathrm{m}^2)$

6) Equation for Net Ground Water Flow into Area across Boundary 🗗

ex $12 \mathrm{m}^3/\mathrm{s} = (5\mathrm{m} \cdot 0.59 \cdot 20\mathrm{m}^2) - 45\mathrm{m}^3/\mathrm{s} + 10\mathrm{m}^3/\mathrm{s} + 6\mathrm{m}^3/\mathrm{s} - 18\mathrm{m}^3/\mathrm{s}$

7) Equation for Recharge from Irrigation in Area

 $I = (ext{h} \cdot ext{S}_{ ext{Y}} \cdot ext{A}) - ext{R}_{ ext{G}} + ext{D}_{ ext{G}} + ext{B} - ext{I}_{ ext{s}}$

fx $m R_{
m gw} = R - R_{
m rf} - R_{
m wt} - R_{
m t}$

Open Calculator

Open Calculator

ex $19 \text{m}^3/\text{s} = 70 \text{m}^3/\text{s} - 16 \text{m}^3/\text{s} - 21 \text{m}^3/\text{s} - 14 \text{m}^3/\text{s}$

8) Equation for Recharge from Rainfall

fx $m R_{rf} = R - R_{gw} - R_{wt} - R_{t}$

Open Calculator 🚰

ex $16 \text{m}^3/\text{s} = 70 \text{m}^3/\text{s} - 19 \text{m}^3/\text{s} - 21 \text{m}^3/\text{s} - 14 \text{m}^3/\text{s}$

9) Equation for Recharge from Stream into Ground Water Body 🗗

 $[\mathbf{I}_{\mathrm{s}}] = (\mathbf{h} \cdot \mathbf{A} \cdot \mathbf{S}_{\mathrm{Y}}) - \mathbf{R}_{\mathrm{G}} + \mathbf{D}_{\mathrm{G}} + \mathbf{B} - \mathbf{I}$

Open Calculator

ex $18 \mathrm{m}^3/\mathrm{s} = (5\mathrm{m} \cdot 20\mathrm{m}^2 \cdot 0.59) - 45\mathrm{m}^3/\mathrm{s} + 10\mathrm{m}^3/\mathrm{s} + 6\mathrm{m}^3/\mathrm{s} - 12\mathrm{m}^3/\mathrm{s}$

10) Equation for Recharge from Tanks and Ponds

fx $R_{
m t}=R-R_{
m rf}-R_{
m ow}-R_{
m wt}$

fx $R_{
m wt} = R - R_{
m rf} - R_{
m ow} - R_{
m t}$

Open Calculator

Open Calculator 2

Open Calculator

Open Calculator 2

 $= 14 \text{m}^3/\text{s} = 70 \text{m}^3/\text{s} - 16 \text{m}^3/\text{s} - 19 \text{m}^3/\text{s} - 21 \text{m}^3/\text{s}$

11) Equation for Recharge from Water Conservation Structures

ex $21 \text{m}^3/\text{s} = 70 \text{m}^3/\text{s} - 16 \text{m}^3/\text{s} - 19 \text{m}^3/\text{s} - 14 \text{m}^3/\text{s}$

12) Equation for Recharge when Gross Water Draft is Considered

ex $49 \text{m}^3/\text{s} = (5 \text{m} \cdot 0.59 \cdot 20 \text{m}^2) - 10 \text{m}^3/\text{s}$

13) Equation for Specific Yield 6

 $\mathbf{S}_{\mathrm{Y}} = rac{\mathrm{R}_{\mathrm{G}} - \mathrm{D}_{\mathrm{G}} - \mathrm{B} + \mathrm{I}_{\mathrm{s}} + \mathrm{I}_{\mathrm{s}}}{\mathbf{A} \cdot \mathbf{h}}$

 $0.59 = rac{45 ext{m}^3/ ext{s} - 10 ext{m}^3/ ext{s} - 6 ext{m}^3/ ext{s} + 18 ext{m}^3/ ext{s} + 12 ext{m}^3/ ext{s}}{45 ext{m}^3/ ext{s} + 12 ext{m}^3/ ext{s}}$ $20m^2 \cdot 5m$

14) Equation for Water Level Fluctuation

 $h = rac{\mathrm{R_G} - \mathrm{D_G} - \mathrm{B} + \mathrm{I_s} + \mathrm{I}}{\mathrm{A} \cdot \mathrm{S_Y}}$

Open Calculator

 $ext{ex} = rac{45 ext{m}^3/ ext{s} - 10 ext{m}^3/ ext{s} - 6 ext{m}^3/ ext{s} + 18 ext{m}^3/ ext{s} + 12 ext{m}^3/ ext{s}}{20 ext{m}^2 \cdot 0.59}$

15) Equation for Watershed Area about Specific Yield and Water Level Fluctuation

 $\mathbf{A} = rac{\mathrm{R_G} - \mathrm{D_G} - \mathrm{B} + \mathrm{I_s} + \mathrm{I}}{\mathrm{S_Y} \cdot \mathrm{h}}$

Open Calculator 🚰

 $oxed{20 m^2 = rac{45 m^3/s - 10 m^3/s - 6 m^3/s + 18 m^3/s + 12 m^3/s}{0.59 \cdot 5 m}}$

16) Net Ground Water Flow given Possible Recharge

fx $I = R - R_G + B - I_s$

Open Calculator 🖸

 $= 13 ext{m}^3/ ext{s} = 70 ext{m}^3/ ext{s} - 45 ext{m}^3/ ext{s} + 6 ext{m}^3/ ext{s} - 18 ext{m}^3/ ext{s}$

17) Possible Recharge given Gross Recharge due to Rainfall

fx $m R = R_G - B + I + I_s$

Open Calculator 🗗

 $69 \mathrm{m}^3/\mathrm{s} = 45 \mathrm{m}^3/\mathrm{s} - 6 \mathrm{m}^3/\mathrm{s} + 12 \mathrm{m}^3/\mathrm{s} + 18 \mathrm{m}^3/\mathrm{s}$

18) Possible Recharge given other Recharge Factors

 $R = R_{
m rf} + R_{
m gw} + R_{
m wt} + R_{
m t}$

Open Calculator

 $= 70 \mathrm{m}^3/\mathrm{s} = 16 \mathrm{m}^3/\mathrm{s} + 19 \mathrm{m}^3/\mathrm{s} + 21 \mathrm{m}^3/\mathrm{s} + 14 \mathrm{m}^3/\mathrm{s}$

19) Recharge from Stream into Ground water Body given Possible Recharge

fx $I_{\rm s}=R-R_{\rm G}+B-I$

Open Calculator 🗗

 $m ex[19m^3/s=70m^3/s-45m^3/s+6m^3/s-12m^3/s]$

20) Specific Yield when Possible Recharge and Gross Water Draft is Considered

 $\mathbf{E} \mathbf{S}_{\mathrm{Y}} = rac{\mathrm{R} + \mathrm{D}_{\mathrm{G}}}{\mathrm{h} \cdot \mathrm{A}}$

Open Calculator 🗗

 $oxed{ex} 0.8 = rac{70 {
m m}^3/{
m s} + 10 {
m m}^3/{
m s}}{5 {
m m} \cdot 20 {
m m}^2}$

21) Water Level Fluctuation when Possible Recharge and Gross Water Draft is Considered

 $h = rac{R + D_G}{S_V \cdot A}$

Open Calculator

$$ext{ex} 6.779661 ext{m} = rac{70 ext{m}^3/ ext{s} + 10 ext{m}^3/ ext{s}}{0.59 \cdot 20 ext{m}^2}$$

Variables Used

- A Watershed Area (Square Meter)
- B Base Flow into the Stream from the Area (Cubic Meter per Second)
- D_G Gross Water Draft (Cubic Meter per Second)
- **h** Water Level Fluctuation (Meter)
- I Net Ground Water Flowing Outside Catchment (Cubic Meter per Second)
- I_s Recharge of Ground Water Body (Cubic Meter per Second)
- R Possible Recharge (Cubic Meter per Second)
- RG Gross Recharge due to Rainfall (Cubic Meter per Second)
- R_{qw} Recharge from Irrigation (Cubic Meter per Second)
- R_{rf} Recharge from Rainfall (Cubic Meter per Second)
- Rt Recharge from Tanks and Ponds (Cubic Meter per Second)
- Rwt Recharge from Conservation Structures (Cubic Meter per Second)
- S_Y Specific Yield

Constants, Functions, Measurements used

- Measurement: Length in Meter (m)

 Length Unit Conversion
- Measurement: Area in Square Meter (m²)

 Area Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)

 Volumetric Flow Rate Unit Conversion

Check other formula lists

- Groundwater Level Fluctuation Specific Yield Method Formulas **Rainfall Infiltration Method**
 - Formulas

PDF Available in

Feel free to SHARE this document with your friends!

English Spanish French German Russian Italian Portuguese Polish Dutch

7/15/2024 | 5:49:00 AM UTC

Formulas C

Please leave your feedback here...

