

Unconfined Flow Formulas

Calculators!

Examples!

Conversions!

Bookmark <u>calculatoratoz.com</u>, <u>unitsconverters.com</u>

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 27 Unconfined Flow Formulas

Unconfined Flow **3**

1) Coefficient of Permeability when Equilibrium Equation for Well in Unconfined Aquifer

$$\mathbf{K} = rac{Q_u}{\pi \cdot rac{H_2^2 - H_1^2}{\ln\left(rac{r_2}{r_1}
ight)}}$$

Open Calculator

$$\boxed{ 8.148474 \text{cm/s} = \frac{65 \text{m}^3/\text{s}}{\pi \cdot \frac{(45 \text{m})^2 - (43 \text{m})^2}{\ln(\frac{10.0 \text{m}}{5.0 \text{m}})} } } }$$

2) Depth of Water in Pumping Well when Steady Flow in Unconfined Aquifer is Considered

$$\mathbf{k} \mathbf{h}_{w} = \sqrt{\left(H
ight)^{2} - \left(rac{Q_{u} \cdot \ln\left(rac{r}{R_{w}}
ight)}{\pi \cdot K}
ight)}$$

Open Calculator

$$29.94862 \mathrm{m} = \sqrt{\left(35 \mathrm{m}\right)^2 - \left(\frac{65 \mathrm{m}^3/\mathrm{s} \cdot \ln\left(\frac{25 \mathrm{m}}{6 \mathrm{m}}\right)}{\pi \cdot 9 \mathrm{cm/s}}\right) }$$

3) Discharge at Edge of Zone of Influence

$$\mathbf{Q}_{\mathrm{u}} = \pi \cdot \mathbf{K} \cdot rac{\mathbf{H}^2 - \mathbf{h}_{\mathrm{w}}^2}{\ln \left(rac{\mathbf{r}}{\mathbf{R}_{\mathrm{w}}}
ight)}$$

Open Calculator

ex
$$64.38969 ext{m}^3/ ext{s} = \pi \cdot 9 ext{cm/s} \cdot rac{(35 ext{m})^2 - (30 ext{m})^2}{\ln\left(rac{25 ext{m}}{6 ext{m}}
ight)}$$

4) Equilibrium Equation for Well in Unconfined Aquifer

$$\mathbf{Q}_{\mathrm{u}} = \pi \cdot \mathrm{K} \cdot rac{\mathrm{H}_{2}^{2} - \mathrm{H}_{1}^{2}}{\mathrm{ln}\left(rac{\mathrm{r}_{2}}{\mathrm{r}_{1}}
ight)}$$

Open Calculator

ex
$$71.79258 ext{m}^3/ ext{s} = \pi \cdot 9 ext{cm/s} \cdot rac{\left(45 ext{m}
ight)^2 - \left(43 ext{m}
ight)^2}{ ext{ln}\left(rac{10.0 ext{m}}{5.0 ext{m}}
ight)}$$

5) Saturated Thickness of Aquifer when Steady Flow of Unconfined Aquifer is Considered

 $\mathbf{K} = \sqrt{rac{\mathrm{Q_u} \cdot \mathrm{ln} \left(rac{\mathrm{r}}{\mathrm{R_w}}
ight)}{\pi \cdot \mathrm{K}} + \mathrm{h_w^2}}$

Open Calculator

Approximate Equations 🗗

6) Discharge when Drawdown at Pumping Well is Considered

 $\mathbf{Q}_{\mathrm{u}} = 2 \cdot \pi \cdot T \cdot rac{\mathbf{s}_{\mathrm{w}}}{\ln \left(rac{\mathbf{r}}{\mathbf{R}_{\mathrm{w}}}
ight)}$

Open Calculator

$$\boxed{\text{ex}} 64.99727 \text{m}^3/\text{s} = 2 \cdot \pi \cdot 0.703 \text{m}^2/\text{s} \cdot \frac{21 \text{m}}{\ln \left(\frac{25 \text{m}}{6 \text{m}}\right)}$$

7) Drawdown at Pumping Well

 $\mathbf{f}\mathbf{x} \mathbf{s}_{\mathrm{w}} = (\mathbf{H} - \mathbf{h}_{\mathrm{w}})$

Open Calculator

$$5m = (35m - 30m)$$

8) Drawdown when Steady Flow of Unconfined Aquifer

 $\mathbf{x} = rac{\mathrm{Q_u \cdot ln}\left(rac{\mathrm{r}}{\mathrm{R_w}}
ight)}{2 \cdot \pi \cdot \mathrm{T}}$

Open Calculator

$$= \frac{65 m^3 / s \cdot \ln \left(\frac{25 m}{6 m}\right)}{2 \cdot \pi \cdot 0.703 m^2 / s}$$

9) Transmissivity when Discharge at Drawdown is Considered

$$\mathbf{r} = \frac{Q_u \cdot ln \left(\frac{r}{R_w}\right)}{2 \cdot \pi \cdot s_w}$$

Open Calculator 🗗

$$oxed{ex} 0.70303 \mathrm{m}^2/\mathrm{s} = rac{65 \mathrm{m}^3/\mathrm{s} \cdot \ln\left(rac{25 \mathrm{m}}{6 \mathrm{m}}
ight)}{2 \cdot \pi \cdot 21 \mathrm{m}}$$

Unconfined Flow by Dupit's Assumption 🗗

10) Change in Drawdown given Discharge 🗗

$$\mathbf{x} = \mathbf{Q} \cdot rac{\ln\left(rac{\mathbf{r}_2}{\mathbf{r}_1}
ight)}{2} \cdot \pi \cdot \mathbf{T}$$

Open Calculator

$$\boxed{0.995048 m = 1.3 m^3/s \cdot \frac{\ln\left(\frac{10.0 m}{5.0 m}\right)}{2} \cdot \pi \cdot 0.703 m^2/s}$$

11) Discharge per Unit Width of Aquifer considering Permeability

$$oxed{Q} = rac{\left(ext{h}_{ ext{o}}^2 - ext{h}_{1}^2
ight) \cdot ext{K}}{2 \cdot ext{L}_{ ext{stream}}}$$

Open Calculator

$$\boxed{ 1.309291 m^3/s = \frac{\left(\left(12 m \right)^2 - \left(5 m \right)^2 \right) \cdot 9 cm/s}{2 \cdot 4.09 m} }$$

12) Length about Discharge per Unit Width of Aquifer

$$\mathbf{L}_{\mathrm{stream}} = \left(\mathbf{h}_{\mathrm{o}}^2 - \mathbf{h}_{\mathrm{1}}^2
ight) \cdot rac{\mathrm{K}}{2 \cdot \mathrm{Q}}$$

Open Calculator

13) Length when Discharge entering per Unit Length of Drain is Considered

$$L = \frac{Q}{R}$$

Open Calculator

$$oxed{ex} 0.08125 \mathrm{m} = rac{1.3 \mathrm{m}^3/\mathrm{s}}{16 \mathrm{m}^3/\mathrm{s}}$$

14) Length when Maximum Height of Water Table is Considered

$$\mathrm{L} = 2 \cdot rac{h_{\mathrm{m}}}{\sqrt{rac{R}{K}}}$$

Open Calculator

$$\boxed{\mathbf{ex} \quad 6m = 2 \cdot \frac{40m}{\sqrt{\frac{16m^3/s}{9cm/s}}}}$$

15) Mass Flux Entering Element 🗗

$$\mathbf{M}_{x1} =
ho_{water} \cdot V_x \cdot H_w \cdot \Delta y$$

Open Calculator

Open Calculator

Open Calculator 🚰

Open Calculator 2

Open Calculator

$$= 255000 = 1000 ext{kg/m}^3 \cdot 10 \cdot 2.55 ext{m} \cdot 10$$

$$\mathbf{f}_{\mathrm{m}} = \left(rac{L}{2}
ight) \cdot \sqrt{rac{R}{K}}$$

$$\boxed{40\mathrm{m} = \left(\frac{6\mathrm{m}}{2}\right) \cdot \sqrt{\frac{16\mathrm{m}^3/\mathrm{s}}{9\mathrm{cm/s}}}}$$

17) Natural Recharge given Total Head

$$m R = rac{h^2 \cdot K}{(L-x) \cdot x}$$

$$\boxed{ 18 m^3/s = \frac{\left(4 m\right)^2 \cdot 9 cm/s}{\left(6 m - 2.0 m^3/s\right) \cdot 2.0 m^3/s} }$$

18) Recharge when Maximum Height of Water Table 🗗

$$R = \left(rac{h_m}{rac{L}{2}}
ight)^2 \cdot K$$

$$\boxed{\text{ex}} \ 16 \text{m}^3/\text{s} = \left(\frac{40 \text{m}}{\frac{6 \text{m}}{2}}\right)^2 \cdot 9 \text{cm/s}$$

19) Water Table Profile Neglecting Depths of Water in Drains

$$\text{fx} = \sqrt{\left(\frac{R}{K}\right) \cdot (L - x) \cdot x}$$

$$= \sqrt{\left(\frac{16 m^3/s}{9 cm/s}\right) \cdot \left(6 m - 2.0 m^3/s\right) \cdot 2.0 m^3/s}$$

One Dimensional Dupit's Flow with Recharge 🚰

20) Coefficient of Aquifer Permeability considering Discharge per Unit Width of Aquifer

$$ext{K} = rac{ ext{Q} \cdot 2 \cdot ext{L}_{ ext{stream}}}{\left(ext{h}_{ ext{o}}^2
ight) - \left(ext{h}_{ ext{1}}^2
ight)}$$

Open Calculator 🗗

$$= \frac{1.3 \text{m}^3/\text{s} \cdot 2 \cdot 4.09 \text{m}}{\left(\left(12 \text{m}\right)^2\right) - \left(\left(5 \text{m}\right)^2\right)}$$

21) Coefficient of Aquifer Permeability given Maximum Height of Water Table

$$\mathbf{K} = rac{\mathbf{R} \cdot \mathbf{L}^2}{\left(2 \cdot \mathbf{h}_{\mathrm{m}}\right)^2}$$

Open Calculator

$$m 9cm/s = rac{16m^3/s \cdot (6m)^2}{\left(2 \cdot 40m\right)^2}$$

22) Coefficient of Aquifer Permeability given Water Table Profile

$$\mathbf{K} = \left(\left(\frac{R}{h^2} \right) \cdot (L - x) \cdot x \right)$$

Open Calculator

$$m 8cm/s = \left(\left(rac{16m^3/s}{\left(4m
ight)^2}
ight) \cdot \left(6m - 2.0m^3/s
ight) \cdot 2.0m^3/s
ight)$$

23) Discharge at Downstream Water Body of Catchment

$$\mathbf{q}_1 = \left(rac{\mathrm{R}\cdot\mathrm{L_{stream}}}{2}
ight) + \left(\left(rac{\mathrm{K}}{2\cdot\mathrm{L_{stream}}}
ight)\cdot\left(\mathrm{h_o^2}-\mathrm{h_1^2}
ight)
ight)$$

Open Calculator

$$\boxed{\texttt{ex}} \boxed{34.02929 \text{m}^3/\text{s} = \left(\frac{16 \text{m}^3/\text{s} \cdot 4.09 \text{m}}{2}\right) + \left(\left(\frac{9 \text{cm/s}}{2 \cdot 4.09 \text{m}}\right) \cdot \left(\left(12 \text{m}\right)^2 - \left(5 \text{m}\right)^2\right)\right)}$$

24) Discharge Entering Drain per Unit Length of Drain

$$\mathbf{r} \mathbf{q}_{\mathrm{d}} = 2 \cdot \left(\mathrm{R} \cdot \left(rac{\mathrm{L}}{2}
ight)
ight)$$

Open Calculator 🗗

25) Discharge per Unit Width of Aquifer at any Location x

 $\left|\mathbf{q}_{\mathrm{x}}
ight| \mathbf{q}_{\mathrm{x}} = \mathrm{R} \cdot \left(\mathbf{x} - \left(rac{\mathrm{L}_{\mathrm{stream}}}{2}
ight)
ight) + \left(rac{\mathrm{K}}{2} \cdot \mathrm{L}_{\mathrm{stream}}
ight) \cdot \left(\mathrm{h}_{\mathrm{o}}^{2} - \mathrm{h}_{1}^{2}
ight)$

Open Calculator

$$\boxed{ 21.18195 m^3/s = 16 m^3/s \cdot \left(2.0 m^3/s - \left(\frac{4.09 m}{2} \right) \right) + \left(\frac{9 cm/s}{2} \cdot 4.09 m \right) \cdot \left((12 m)^2 - (5 m)^2 \right) }$$

26) Equation for Water Divide

$$a = \left(rac{L_{stream}}{2}
ight) - \left(rac{K}{R}
ight) \cdot \left(rac{h_o^2 - h_1^2}{2} \cdot L_{stream}
ight)$$

Open Calculator 🖸

$$\boxed{ \textbf{ex} \ 0.676128 = \left(\frac{4.09 \text{m}}{2}\right) - \left(\frac{9 \text{cm/s}}{16 \text{m}^3/\text{s}}\right) \cdot \left(\frac{\left(12 \text{m}\right)^2 - \left(5 \text{m}\right)^2}{2} \cdot 4.09 \text{m} \right) }$$

27) Equation of Head for Unconfined Aquifer on Horizontal Impervious Base

$$h = \sqrt{\left(\frac{-R \cdot x^2}{K}\right) - \left(\left(\frac{h_o^2 - h_1^2 - \left(\frac{R \cdot L_{stream}^2}{K}\right)}{L_{stream}}\right) \cdot x\right) + h_o^2}$$

Open Calculator

ex

$$28.79098m = \sqrt{\left(\frac{-16m^3/s \cdot (2.0m^3/s)^2}{9cm/s}\right) - \left(\left(\frac{\left(12m\right)^2 - \left(5m\right)^2 - \left(\frac{16m^3/s \cdot (4.09m)^2}{9cm/s}\right)}{4.09m}\right) \cdot 2.0m^3/s}\right) + (12m)^2}$$

Variables Used

- a Water Divide
- h Water Table Profile (Meter)
- **H** Saturated Thickness of the Aquifer (Meter)
- h₁ Piezometric Head at Downstream End (Meter)
- H₁ Water Table Depth (Meter)
- H₂ Water Table Depth 2 (Meter)
- hm Maximum Height of Water Table (Meter)
- ho Piezometric Head at Upstream End (Meter)
- hw Depth of Water in the Pumping Well (Meter)
- Hw Head (Meter)
- K Coefficient of Permeability (Centimeter per Second)
- L Length between Tile Drain (Meter)
- L_{stream} Length between Upstream and Downstream (Meter)
- Mx1 Mass Flux Entering the Element
- Q Discharge (Cubic Meter per Second)
- **q**₁ Discharge at Downstream Side (Cubic Meter per Second)
- q_d Discharge per unit Length of the Drain (Cubic Meter per Second)
- Q_u Steady Flow of an Unconfined Aquifer (Cubic Meter per Second)
- **q**_x Discharge of Aquifer at any Location x (Cubic Meter per Second)
- r Radius at the Edge of Zone of Influence (Meter)
- R Natural Recharge (Cubic Meter per Second)
- r₁ Radial Distance at Observation Well 1 (Meter)
- r₂ Radial Distance at Observation Well 2 (Meter)
- Rw Radius of the Pumping Well (Meter)
- S Change in Drawdown (Meter)
- S_w Drawdown at the Pumping Well (Meter)
- T Transmissivity of an Unconfined Aquifer (Square Meter per Second)
- V_x Gross Velocity of Groundwater
- X Flow in 'x' Direction (Cubic Meter per Second)
- Δy Change in 'y' Direction
- ρ_{water} Water Density (Kilogram per Cubic Meter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288
 Archimedes' constant
- Function: In, In(Number)

The natural logarithm, also known as the logarithm to the base e, is the inverse function of the natural exponential function.

• Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

• Measurement: Length in Meter (m)
Length Unit Conversion

Measurement: Speed in Centimeter per Second (cm/s)
 Speed Unit Conversion

• Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)

Volumetric Flow Rate Unit Conversion

• Measurement: Kinematic Viscosity in Square Meter per Second (m²/s)

Kinematic Viscosity Unit Conversion

Measurement: Density in Kilogram per Cubic Meter (kg/m³)
 Density Unit Conversion

Check other formula lists

- Aquifer Analysis and Properties Formulas
- Coefficient of Permeability Formulas
- Distance-Drawdown Analysis Formulas
- Open Wells Formulas

- Steady Flow into a Well Formulas
- Unconfined Flow Formulas
- Unsteady Flow in a Confined Aquifer Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

7/15/2024 | 9:57:48 AM UTC

Please leave your feedback here...

