Thread Measurement Formulas

Bookmark calculatoratoz.com, unitsconverters.com
Widest Coverage of Calculators and Growing - 30,000+ Calculators!
Calculate With a Different Unit for Each Variable - In built Unit Conversion!
Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 45 Thread Measurement Formulas

Thread Measurement ©

Three Wires System Method

ACME Thread

1) Diameter of measuring wires ACME threads
fx $\mathrm{G}=\frac{\mathrm{M}-\mathrm{D}+1.933357 \cdot \mathrm{P}}{4.9939}$
ex $1.401724 \mathrm{~mm}=\frac{8.2 \mathrm{~mm}-7 \mathrm{~mm}+1.933357 \cdot 3 \mathrm{~mm}}{4.9939}$
2) Micrometer measurement per reading acme threads
$f \times \mathrm{M}=\mathrm{D}+4.9939 \cdot \mathrm{G}-\mathrm{P} \cdot 1.933357$
f. $\mathrm{D}=\mathrm{M}-(4.9939 \cdot \mathrm{G}-1.933357 \cdot \mathrm{P})$
ex $8.007391 \mathrm{~mm}=8.2 \mathrm{~mm}-(4.9939 \cdot 1.2 \mathrm{~mm}-1.933357 \cdot 3 \mathrm{~mm})$
3) Pitch of screw acme threads

$$
\mathrm{P}=\frac{\mathrm{D}-\mathrm{M}+4.9939 \cdot \mathrm{G}}{1.933357}
$$

ex $2.478942 \mathrm{~mm}=\frac{7 \mathrm{~mm}-8.2 \mathrm{~mm}+4.9939 \cdot 1.2 \mathrm{~mm}}{1.933357}$

British Association Thread

5) Diameter of Measuring Wires British Threads $\boxed{\square}$

$$
\begin{aligned}
& \mathrm{G}=\frac{\mathrm{M}-\mathrm{D}+1.13634 \cdot \mathrm{P}}{3.4829} \\
& 1.323328 \mathrm{~mm}=\frac{8.2 \mathrm{~mm}-7 \mathrm{~mm}+1.13634 \cdot 3 \mathrm{~mm}}{3.4829}
\end{aligned}
$$

6) Micrometer Measurement per Reading British Threads
$\mathrm{fx} \mathrm{M}=\mathrm{D}+3.4829 \cdot \mathrm{G}-1.13634 \cdot \mathrm{P}$
ex $7.77046 \mathrm{~mm}=7 \mathrm{~mm}+3.4829 \cdot 1.2 \mathrm{~mm}-1.13634 \cdot 3 \mathrm{~mm}$
7) Pitch diameter British thread
$\mathrm{fx} \mathrm{D}=\mathrm{M}-3.4829 \cdot \mathrm{G}+1.13634 \cdot \mathrm{P}$
ex $7.42954 \mathrm{~mm}=8.2 \mathrm{~mm}-3.4829 \cdot 1.2 \mathrm{~mm}+1.13634 \cdot 3 \mathrm{~mm}$
8) Pitch of Screw British
fx $\mathrm{P}=\frac{\mathrm{D}+3.4829 \cdot \mathrm{G}-\mathrm{M}}{1.13634}$
ex $2.621997 \mathrm{~mm}=\frac{7 \mathrm{~mm}+3.4829 \cdot 1.2 \mathrm{~mm}-8.2 \mathrm{~mm}}{1.13634}$
Lowenherz Thread ©
9) Diameter of Measuring Wires
fx $G=\frac{\mathrm{M}+\mathrm{P}-\mathrm{D}}{3.23594}$
ex $1.297923 \mathrm{~mm}=\frac{8.2 \mathrm{~mm}+3 \mathrm{~mm}-7 \mathrm{~mm}}{3.23594}$
10) Micrometer Measurement per Reading Lowenherz
$f \mathrm{fx}=\mathrm{D}+3.23594 \cdot \mathrm{G}-\mathrm{P}$
ex $7.883128 \mathrm{~mm}=7 \mathrm{~mm}+3.23594 \cdot 1.2 \mathrm{~mm}-3 \mathrm{~mm}$
11) Pitch Diameter Lowenherz
fx $D=M-3.23594 \cdot G+P$
ex $7.316872 \mathrm{~mm}=8.2 \mathrm{~mm}-3.23594 \cdot 1.2 \mathrm{~mm}+3 \mathrm{~mm}$
12) Pitch of Screw Lowenherz
f. $\mathrm{P}=\mathrm{D}-\mathrm{M}+3.23594 \cdot \mathrm{G}$
ex $2.683128 \mathrm{~mm}=7 \mathrm{~mm}-8.2 \mathrm{~mm}+3.23594 \cdot 1.2 \mathrm{~mm}$

Metric Thread

13) Diameter of Wire used in Three Wire System Method
$f_{\mathbf{x}} \mathrm{G}_{\mathrm{m}}=\frac{\mathrm{M}-\mathrm{D}+\frac{\mathrm{P} \cdot \cot (\theta)}{2}}{1+\operatorname{cosec}(\theta)}$
ex $0.958846 \mathrm{~mm}=\frac{8.2 \mathrm{~mm}-7 \mathrm{~mm}+\frac{3 \mathrm{~mm} \cdot \cot \left(60^{\circ}\right)}{2}}{1+\operatorname{cosec}\left(60^{\circ}\right)}$
14) Ideal wire diameter in three wire system method
$\mathrm{fx} \mathrm{G}_{\mathrm{m}}=\left(\frac{\mathrm{P}}{2}\right) \cdot \sec \left(\frac{\theta}{2}\right)$
ex $1.732051 \mathrm{~mm}=\left(\frac{3 \mathrm{~mm}}{2}\right) \cdot \sec \left(\frac{60^{\circ}}{2}\right)$
15) Micrometer reading from three wire system method
$f \mathbf{x} M=\mathrm{D}+\mathrm{G}_{\mathrm{m}} \cdot(1+\cos e c(\theta))-\frac{\mathrm{P} \cdot \cot (\theta)}{2}$
ex $9.883154 \mathrm{~mm}=7 \mathrm{~mm}+1.74 \mathrm{~mm} \cdot\left(1+\operatorname{cosec}\left(60^{\circ}\right)\right)-\frac{3 \mathrm{~mm} \cdot \cot \left(60^{\circ}\right)}{2}$
16) Pitch diameter from three wire system method
$\mathrm{fx} \mathrm{D}=\mathrm{M}-\left(\mathrm{G}_{\mathrm{m}} \cdot(1+\operatorname{cosec}(\theta))-\frac{\mathrm{P} \cdot \cot (\theta)}{2}\right)$
ex $5.316846 \mathrm{~mm}=8.2 \mathrm{~mm}-\left(1.74 \mathrm{~mm} \cdot\left(1+\operatorname{cosec}\left(60^{\circ}\right)\right)-\frac{3 \mathrm{~mm} \cdot \cot \left(60^{\circ}\right)}{2}\right)$
17) Pitch of thread from three wire system method

$$
\mathrm{fx} P=\frac{\mathrm{D}+\mathrm{G}_{\mathrm{m}} \cdot(1+\operatorname{cosec}(\theta))-\mathrm{M}}{\frac{\cot (\theta)}{2}}
$$

ex $8.830615 \mathrm{~mm}=\frac{7 \mathrm{~mm}+1.74 \mathrm{~mm} \cdot\left(1+\cos e c\left(60^{\circ}\right)\right)-8.2 \mathrm{~mm}}{\frac{\cot \left(60^{\circ}\right)}{2}}$
18) Pitch of thread given ideal wire diameter
$P=\frac{2 \cdot G_{m}}{\sec \left(\frac{\theta}{2}\right)}$
ex $3.013768 \mathrm{~mm}=\frac{2 \cdot 1.74 \mathrm{~mm}}{\sec \left(\frac{60^{\circ}}{2}\right)}$
19) Thread Angle given Ideal Wire Diameter
$f \mathrm{x} \theta=2 \cdot \operatorname{arcsec}\left(\frac{2 \cdot \mathrm{G}_{\mathrm{m}}}{\mathrm{P}}\right)$
ex $60.90063^{\circ}=2 \cdot \operatorname{arcsec}\left(\frac{2 \cdot 1.74 \mathrm{~mm}}{3 \mathrm{~mm}}\right)$

Sharp-V Thread

20) Diameter of Wire used Sharp V
fx $\mathrm{G}=\frac{\mathrm{M}-\mathrm{D}+0.86603 \cdot \mathrm{P}}{3}$
ex $1.26603 \mathrm{~mm}=\frac{8.2 \mathrm{~mm}-7 \mathrm{~mm}+0.86603 \cdot 3 \mathrm{~mm}}{3}$
21) Micrometer Measurement per Reading Sharp V
f. $\mathrm{M}=\mathrm{D}+3 \cdot \mathrm{G}-0.86603 \cdot \mathrm{P}$
ex $8.00191 \mathrm{~mm}=7 \mathrm{~mm}+3 \cdot 1.2 \mathrm{~mm}-0.86603 \cdot 3 \mathrm{~mm}$
22) Pitch Diameter Sharp $\vee \sqrt{\square}$
f* $\mathrm{D}=\mathrm{M}-3 \cdot \mathrm{G}+0.86603 \cdot \mathrm{P}$
ex $7.19809 \mathrm{~mm}=8.2 \mathrm{~mm}-3 \cdot 1.2 \mathrm{~mm}+0.86603 \cdot 3 \mathrm{~mm}$
23) Pitch of Screw Threads Sharp V
fx $\mathrm{P}=\frac{\mathrm{D}+3 \cdot \mathrm{G}-\mathrm{M}}{0.86603}$
ex $2.771267 \mathrm{~mm}=\frac{7 \mathrm{~mm}+3 \cdot 1.2 \mathrm{~mm}-8.2 \mathrm{~mm}}{0.86603}$

Unified and National Threads ©

24) Diameter of Wire used Unified and National Threads
f. $G=\frac{\mathrm{M}-\mathrm{D}+0.86603 \cdot \mathrm{P}}{3}$
ex $1.26603 \mathrm{~mm}=\frac{8.2 \mathrm{~mm}-7 \mathrm{~mm}+0.86603 \cdot 3 \mathrm{~mm}}{3}$
25) Micrometer Measurement per Reading $\boxed{\boxed{ } 1}$
$f x \mathrm{M}=\mathrm{D}+3 \cdot \mathrm{G}-0.86603 \cdot \mathrm{P}$
ex $8.00191 \mathrm{~mm}=7 \mathrm{~mm}+3 \cdot 1.2 \mathrm{~mm}-0.86603 \cdot 3 \mathrm{~mm}$
26) Pitch diameter Unified national threads
$\mathrm{fx} \mathrm{D}=\mathrm{M}-3 \cdot \mathrm{G}+0.86603 \cdot \mathrm{P}$
ex $7.19809 \mathrm{~mm}=8.2 \mathrm{~mm}-3 \cdot 1.2 \mathrm{~mm}+0.86603 \cdot 3 \mathrm{~mm}$
27) Pitch of Screw Threads
fx $\mathrm{P}=\frac{\mathrm{D}-\mathrm{M}+3 \cdot \mathrm{G}}{0.86603}$
ex $2.771267 \mathrm{~mm}=\frac{7 \mathrm{~mm}-8.2 \mathrm{~mm}+3 \cdot 1.2 \mathrm{~mm}}{0.86603}$

Unsymmetrical Threads

28) Best size wire 〔

f. $G=P \cdot\left(\frac{\tan \left(\frac{a_{1}+a_{2}}{2}\right) \cdot \sec \left(a_{1}\right)}{\tan \left(a_{1}\right)+\tan \left(a_{2}\right)}\right)$
ex $1.500047 \mathrm{~mm}=3 \mathrm{~mm} \cdot\left(\frac{\tan \left(\frac{0.5^{\circ}+0.2^{\circ}}{2}\right) \cdot \sec \left(0.5^{\circ}\right)}{\tan \left(0.5^{\circ}\right)+\tan \left(0.2^{\circ}\right)}\right)$
29) Best wire size for modified buttress 45 deg and 7 deg
$f \mathrm{f} G=0.54147 \cdot \mathrm{P}$
ex $1.62441 \mathrm{~mm}=0.54147 \cdot 3 \mathrm{~mm}$
30) Micrometer reading per measurement
$\mathrm{M}=\mathrm{D}_{\mathrm{u}}-\left(\frac{\mathrm{P}}{\tan \left(\mathrm{a}_{1}\right)+\tan \left(\mathrm{a}_{2}\right)}\right)+\mathrm{G} \cdot\left(1+\operatorname{cosec}\left(\frac{\mathrm{a}_{1}+\mathrm{a}_{2}}{2}\right) \cdot \cos \left(\frac{\mathrm{a}_{1}-\mathrm{a}_{2}}{2}\right)\right)$
ex
$8.294618 \mathrm{~mm}=56.2 \mathrm{~mm}-\left(\frac{3 \mathrm{~mm}}{\tan \left(0.5^{\circ}\right)+\tan \left(0.2^{\circ}\right)}\right)+1.2 \mathrm{~mm} \cdot\left(1+\operatorname{cosec}\left(\frac{0.5^{\circ}+0.2^{\circ}}{2}\right) \cdot \cos \left(\frac{0.5^{\circ}-0 .:}{2}\right.\right.$
31) Pitch diameter unsymmetrical threads
fx
Open Calculator
$\mathrm{D}_{\mathrm{u}}=\mathrm{M}+\left(\frac{\mathrm{P}}{\tan \left(\mathrm{a}_{1}\right)+\tan \left(\mathrm{a}_{2}\right)}\right)-\mathrm{G} \cdot\left(1+\operatorname{cosec}\left(\frac{\mathrm{a}_{1}+\mathrm{a}_{2}}{2}\right) \cdot \cos \left(\frac{\mathrm{a}_{1}-\mathrm{a}_{2}}{2}\right)\right)$
ex
$56.10538 \mathrm{~mm}=8.2 \mathrm{~mm}+\left(\frac{3 \mathrm{~mm}}{\tan \left(0.5^{\circ}\right)+\tan \left(0.2^{\circ}\right)}\right)-1.2 \mathrm{~mm} \cdot\left(1+\operatorname{cosec}\left(\frac{0.5^{\circ}+0.2^{\circ}}{2}\right) \cdot \cos \left(\frac{0.5^{\circ}-0.2}{2}\right.\right.$
32) Pitch for modified buttress 45 deg and 7 deg 〔
f. $\mathrm{P}=\frac{\mathrm{G}}{0.54147}$

Open Calculator
ex $2.216189 \mathrm{~mm}=\frac{1.2 \mathrm{~mm}}{0.54147}$
33) Pitch of Screw Unsymmetrical Threads
$P=\left(D_{u}+G \cdot\left(1+\operatorname{cosec}\left(\frac{a_{1}+a_{2}}{2}\right) \cdot \cos \left(\frac{a_{1}-a_{2}}{2}\right)\right)-M\right) \cdot\left(\tan \left(a_{1}\right)+\tan \left(a_{2}\right)\right)$
ex
$3.001156 \mathrm{~mm}=\left(56.2 \mathrm{~mm}+1.2 \mathrm{~mm} \cdot\left(1+\operatorname{cosec}\left(\frac{0.5^{\circ}+0.2^{\circ}}{2}\right) \cdot \cos \left(\frac{0.5^{\circ}-0.2^{\circ}}{2}\right)\right)-8.2 \mathrm{~mm}\right) \cdot(\tan (0.5$

USA Standard Taper Pipe Thread

34) Diameter of Wire used USA Standard Taper Pipe
fx $\mathrm{G}=\frac{1.00049 \cdot \mathrm{M}-\mathrm{D}+0.86603 \cdot \mathrm{P}}{3.00049}$
ex $1.267162 \mathrm{~mm}=\frac{1.00049 \cdot 8.2 \mathrm{~mm}-7 \mathrm{~mm}+0.86603 \cdot 3 \mathrm{~mm}}{3.00049}$
35) Micrometer Reading per Measurement USA Standard Taper Pipe
$\mathrm{Fx}=\frac{\mathrm{D}+3.00049 \cdot \mathrm{G}-0.86603 \cdot \mathrm{P}}{1.00049}$
ex $7.998579 \mathrm{~mm}=\frac{7 \mathrm{~mm}+3.00049 \cdot 1.2 \mathrm{~mm}-0.86603 \cdot 3 \mathrm{~mm}}{1.00049}$
36) Pitch Diameter USA Standard Taper Pipe
$f x \mathrm{D}=1.00049 \cdot \mathrm{M}-(3.00049 \cdot \mathrm{G}-0.86603 \cdot \mathrm{P})$
ex $7.20152 \mathrm{~mm}=1.00049 \cdot 8.2 \mathrm{~mm}-(3.00049 \cdot 1.2 \mathrm{~mm}-0.86603 \cdot 3 \mathrm{~mm})$
37) Pitch of Screw USA Standard Taper
$f \times \mathrm{P}=\frac{\mathrm{D}-1.00049 \cdot \mathrm{M}+3.00049 \cdot \mathrm{G}}{0.86603}$
ex $2.767306 \mathrm{~mm}=\frac{7 \mathrm{~mm}-1.00049 \cdot 8.2 \mathrm{~mm}+3.00049 \cdot 1.2 \mathrm{~mm}}{0.86603}$
Whitworth Thread
38) Diameter of Wire 〔

$$
f_{\mathrm{x}} \mathrm{G}=\frac{\mathrm{M}-\mathrm{D}+0.96049 \cdot \mathrm{P}}{3.16568}
$$

ex $1.289287 \mathrm{~mm}=\frac{8.2 \mathrm{~mm}-7 \mathrm{~mm}+0.96049 \cdot 3 \mathrm{~mm}}{3.16568}$
39) Micrometer Reading per Measurement Whitworth
$f \times \mathrm{M}=\mathrm{D}+3.16568 \cdot \mathrm{G}-0.96049 \cdot \mathrm{P}$
ex $7.917346 \mathrm{~mm}=7 \mathrm{~mm}+3.16568 \cdot 1.2 \mathrm{~mm}-0.96049 \cdot 3 \mathrm{~mm}$
40) Pitch diameter whitworth
f. $\mathrm{D}=\mathrm{M}-3.16568 \cdot \mathrm{G}+0.96049 \cdot \mathrm{P}$
ex $7.282654 \mathrm{~mm}=8.2 \mathrm{~mm}-3.16568 \cdot 1.2 \mathrm{~mm}+0.96049 \cdot 3 \mathrm{~mm}$
41) pitch of screw threads whitworth
$f \mathrm{f} P=\frac{\mathrm{D}-\mathrm{M}+3.16568 \cdot \mathrm{G}}{0.96049}$
ex $2.705719 \mathrm{~mm}=\frac{7 \mathrm{~mm}-8.2 \mathrm{~mm}+3.16568 \cdot 1.2 \mathrm{~mm}}{0.96049}$

Two Wires System Method ©

42) Diameter of wire used in measurement over wires method
$f \mathrm{f} \mathrm{G}_{\mathrm{o}}=\mathrm{M}+0.866 \cdot \mathrm{P}-\mathrm{D}$
ex $3.798 \mathrm{~mm}=8.2 \mathrm{~mm}+0.866 \cdot 3 \mathrm{~mm}-7 \mathrm{~mm}$
43) Micrometer reading from measurement over wires method
$f \mathrm{fx} \mathrm{M}=\mathrm{D}-\left(0.866 \cdot \mathrm{P}-\mathrm{G}_{\mathrm{o}}\right)$
ex $8.212 \mathrm{~mm}=7 \mathrm{~mm}-(0.866 \cdot 3 \mathrm{~mm}-3.81 \mathrm{~mm})$
44) Pitch diameter from measurement over wires method
$f \mathrm{fx}=\mathrm{M}+0.866 \cdot \mathrm{P}-\mathrm{G}_{0}$
ex $6.988 \mathrm{~mm}=8.2 \mathrm{~mm}+0.866 \cdot 3 \mathrm{~mm}-3.81 \mathrm{~mm}$
45) Pitch of thread from measurement over wires method
$f \mathrm{f} P=\frac{\mathrm{D}+\mathrm{G}_{\mathrm{o}}-\mathrm{M}}{0.866}$
ex $3.013857 \mathrm{~mm}=\frac{7 \mathrm{~mm}+3.81 \mathrm{~mm}-8.2 \mathrm{~mm}}{0.866}$

Variables Used

- \mathbf{a}_{1} Large Angle (Degree)
- $\mathbf{a}_{\mathbf{2}}$ Small Angle (Degree)
- D Pitch Diameter (Millimeter)
- $\mathbf{D}_{\mathbf{u}}$ Thickness of Screw (Millimeter)
- G Wire Diameter (Millimeter)
- $\mathbf{G}_{\mathbf{m}}$ Wire Diameter Metric Thread (Millimeter)
- $\mathbf{G}_{\mathbf{o}}$ Diameter of Wire Two Wire Method (Millimeter)
- M Micrometer Reading (Millimeter)
- P Screw Pitch (Millimeter)
- $\boldsymbol{\theta}$ Thread Angle (Degree)

Constants, Functions, Measurements used

- Function: $\operatorname{arcsec}, \operatorname{arcsec}(\mathrm{x})$

Inverse trigonometric secant - Unary function.

- Function: cos, $\cos ($ Angle)

Cosine of an angle is the ratio of the side adjacent to the angle to the hypotenuse of the triangle.

- Function: cosec, cosec (Angle)

The cosecant function is a trigonometric function that is the reciprocal of the sine function.

- Function: cot, $\cot ($ Angle)

Cotangent is a trigonometric function that is defined as the ratio of the adjacent side to the opposite side in a right triangle.

- Function: sec, sec(Angle)

Secant is a trigonometric function that is defined ratio of the hypotenuse to the shorter side adjacent to an acute angle (in a right-angled triangle); the reciprocal of a cosine.

- Function: $\boldsymbol{t a n}, \tan ($ Angle)

The tangent of an angle is a trigonometric ratio of the length of the side opposite an angle to the length of the side adjacent to an angle in a right triangle.

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Angle in Degree (${ }^{\circ}$)

Angle Unit Conversion

Check other formula lists

- Thread Measurement Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

