

Laminar Flow of Fluid in an Open Channel Formulas

Calculators!

Examples!

Conversions!

Bookmark calculatoratoz.com, unitsconverters.com

Widest Coverage of Calculators and Growing - 30,000+ Calculators!

Calculate With a Different Unit for Each Variable - In built Unit Conversion!

Widest Collection of Measurements and Units - 250+ Measurements!

Feel free to SHARE this document with your friends!

Please leave your feedback here...

List of 23 Laminar Flow of Fluid in an Open Channel Formulas

Laminar Flow of Fluid in an Open Channel &

1) Bed Shear Stress

fx
$$au = \gamma_{
m f} \cdot {
m s} \cdot {
m d}_{
m section}$$

Open Calculator

$$490.5 Pa = 9.81 kN/m^3 \cdot 0.01 \cdot 5m$$

2) Bed Slope given Bed Shear Stress

$$\mathbf{f}\mathbf{x} = rac{ au}{\mathrm{d_{section}} \cdot \gamma_{\mathrm{f}}}$$

Open Calculator 🖒

$$0.01 = rac{490.5 ext{Pa}}{5 ext{m} \cdot 9.81 ext{kN/m}^3}$$

3) Diameter of Section given Bed Shear Stress

$$ag{d}_{
m section} = rac{ au}{{
m s} \cdot {
m \gamma}_{
m f}}$$

$$=$$
 $\frac{490.5 Pa}{0.01 \cdot 9.81 kN/m^3}$

4) Diameter of Section given Discharge per Unit Channel Width

 \mathbf{f} $\mathbf{d}_{\mathrm{section}} = \left(rac{3 \cdot \mu \cdot
u}{\mathbf{s} \cdot \gamma_{\mathrm{f}}}
ight)^{rac{1}{3}}$

Open Calculator

ex $4.99694 \mathrm{m} = \left(\frac{3 \cdot 10.2 \mathrm{P} \cdot 4 \mathrm{m}^2 / \mathrm{s}}{0.01 \cdot 9.81 \mathrm{kN/m}^3} \right)^{\frac{1}{3}}$

5) Diameter of Section given Mean Velocity of Flow

 $\mathbf{K} d_{\mathrm{section}} = rac{\left(R^2 + \left(\mu \cdot V_{\mathrm{mean}} \cdot rac{S}{\gamma_{\mathrm{f}}}
ight)
ight)}{R}$

Open Calculator

 $= \frac{\left(\left(1.01 \mathrm{m} \right)^2 + \left(10.2 \mathrm{P} \cdot 10 \mathrm{m/s} \cdot \frac{10}{9.81 \mathrm{kN/m^3}} \right) \right)}{1.01 \mathrm{m}}$

6) Diameter of Section given Potential Head Drop

 $d_{section} = \sqrt{rac{3 \cdot \mu \cdot V_{mean} \cdot L}{\gamma_f \cdot h_L}}$

Open Calculator

 $oxed{4.962437 m} = \sqrt{rac{3 \cdot 10.2 P \cdot 10 m/s \cdot 15 m}{9.81 kN/m^3 \cdot 1.9 m}}$

7) Diameter of Section given Slope of Channel

 $\mathbf{K} \left| \mathrm{d}_{\mathrm{section}} = \left(rac{ au}{\mathrm{s} \cdot \mathrm{v}_c}
ight) + \mathrm{R} \right|$

Open Calculator

 $oxed{6.01 ext{m} = \left(rac{490.5 ext{Pa}}{0.01 \cdot 9.81 ext{kN/m}^3}
ight) + 1.01 ext{m}}$

8) Discharge per unit channel width

 $onumber egin{aligned} \kappa \ arphi = rac{\gamma_{\mathrm{f}} \cdot \mathrm{s} \cdot \mathrm{d}_{\mathrm{section}}^3}{3 \cdot \mu} \end{aligned}$

Open Calculator 🖸

 $oxed{4.007353 ext{m}^2/ ext{s} = rac{9.81 ext{kN/m}^3 \cdot 0.01 \cdot \left(5 ext{m}
ight)^3}{3 \cdot 10.2 ext{P}}}$

9) Dynamic Viscosity given Discharge per Unit Channel Width 🚰

 $\mu = rac{\gamma_{
m f} \cdot {
m s} \cdot {
m d}_{
m section}^3}{3 \cdot {
m v}}$

Open Calculator

ex $10.21875 ext{P} = rac{9.81 ext{kN/m}^3 \cdot 0.01 \cdot (5 ext{m})^3}{3 \cdot 4 ext{m}^2/ ext{s}}$

10) Dynamic Viscosity given Mean Velocity of Flow in Section

 $\mu = rac{\gamma_{
m f} \cdot {
m dh} |{
m dx} \cdot \left({
m d}_{
m section} \cdot {
m R} - {
m R}^2
ight)}{{
m V}_{
m mean}}$

Open Calculator

 $= 10.21146 P = \frac{9.81 kN/m^3 \cdot 0.2583 \cdot \left(5m \cdot 1.01m - (1.01m)^2\right)}{10m/s}$

11) Length of Pipe given Potential Head Drop

 $ag{L} = rac{ ext{h}_{ ext{L}} \cdot ext{\gamma}_{ ext{f}} \cdot \left(ext{d}_{ ext{section}}^2
ight)}{3 \cdot \mu \cdot ext{V}_{ ext{mean}}}$

Open Calculator

 $= \frac{1.9 \text{m} \cdot 9.81 \text{kN/m}^3 \cdot \left((5 \text{m})^2 \right)}{3 \cdot 10.2 \text{P} \cdot 10 \text{m/s} }$

12) Mean Velocity of Flow in Section

 $V_{
m mean} = rac{\gamma_{
m f} \cdot dh | dx \cdot \left(d_{
m section} \cdot R - R^2
ight)}{\pi}$

Open Calculator

 $= \frac{9.81 \text{kN/m}^3 \cdot 0.2583 \cdot \left(5 \text{m} \cdot 1.01 \text{m} - \left(1.01 \text{m}\right)^2\right)}{10.2 \text{P} }$

13) Potential Head Drop

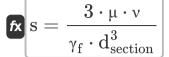
 $\mathbf{h}_{\mathrm{L}} = rac{3 \cdot \mu \cdot \mathrm{V}_{\mathrm{mean}} \cdot \mathrm{L}}{\gamma_{\mathrm{f}} \cdot \mathrm{d}_{\mathrm{section}}^2}$

Open Calculator 🖸

 $1.87156 \text{m} = \frac{3 \cdot 10.2 \text{P} \cdot 10 \text{m/s} \cdot 15 \text{m}}{9.81 \text{kN/m}^3 \cdot (5 \text{m})^2}$

14) Shear Stress given Slope of Channel

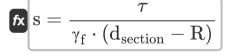
fx $au = \gamma_{
m f} \cdot {
m s} \cdot ({
m d}_{
m section} - {
m R})$


Open Calculator

 $= 391.419 Pa = 9.81 kN/m^3 \cdot 0.01 \cdot (5m - 1.01m)$

15) Slope of Channel given Discharge per Unit Channel Width

Open Calculator


$$= \frac{3 \cdot 10.2 P \cdot 4 m^2 / s}{9.81 kN / m^3 \cdot (5m)^3}$$

16) Slope of Channel given Mean Velocity of Flow

 $S = \frac{\mu \cdot V_{mean}}{\left(d_{section} \cdot R - \frac{R^2}{2}\right) \cdot \gamma_f}$

Open Calculator

17) Slope of Channel given Shear Stress

$$\mathbf{ex} = \frac{490.5 \mathrm{Pa}}{9.81 \mathrm{kN/m^3 \cdot (5m - 1.01m)}}$$

Laminar Flow Through Porous Media


18) Coefficient of Permeability given Velocity

Open Calculator

$$\boxed{\text{ex}} \ 10 \text{cm/s} = \frac{10 \text{m/s}}{100}$$

19) Hydraulic Gradient given Velocity

Open Calculator

$$\boxed{100 = \frac{10 \text{m/s}}{10 \text{cm/s}}}$$

20) Mean Velocity using Darcy's Law

$$\texttt{ex} \ 10 \text{m/s} = 10 \text{cm/s} \cdot 100$$

Lubrication Mechanics Slipper Bearing G

21) Dynamic Viscosity given Pressure Gradient 🗗

Open Calculator

 $\mu = \mathrm{d} \mathrm{p} / \mathrm{d} \mathrm{r} \cdot rac{\mathrm{h}^3}{12 \cdot (0.5 \cdot \mathrm{V}_{\mathrm{mean}} \cdot \mathrm{h} - \mathrm{Q})}$

 $= 10.43536 P = 17 N/m^3 \cdot \frac{(1.81 m)^3}{12 \cdot (0.5 \cdot 10 m/s \cdot 1.81 m - 1.000001 m^3/s)}$

22) Pressure Gradient

 $|\mathbf{dp}| \mathrm{dr} = \left(12 \cdot rac{\mu}{\mathrm{h}^3}
ight) \cdot (0.5 \cdot \mathrm{V_{mean}} \cdot \mathrm{h} - \mathrm{Q})$

Open Calculator

ex

 $16.61658 \mathrm{N/m^3} = \left(12 \cdot \frac{10.2 \mathrm{P}}{\left(1.81 \mathrm{m}\right)^3} \right) \cdot \left(0.5 \cdot 10 \mathrm{m/s} \cdot 1.81 \mathrm{m} - 1.000001 \mathrm{m^3/s}\right)$

23) Rate of Flow given Pressure Gradient

 $\mathbf{R} \left[\mathbf{Q} = 0.5 \cdot \mathbf{V}_{\mathrm{mean}} \cdot \mathbf{h} - \left(\mathrm{dp} | \mathrm{dr} \cdot rac{\mathbf{h}^3}{12 \cdot \mathbf{u}}
ight)
ight]$

$$= 0.814249 \mathrm{m}^{_{3}}/\mathrm{s} = 0.5 \cdot 10 \mathrm{m/s} \cdot 1.81 \mathrm{m} - \left(17 \mathrm{N/m}^{_{3}} \cdot \frac{\left(1.81 \mathrm{m}\right)^{3}}{12 \cdot 10.2 \mathrm{P}}\right)$$

Variables Used

- d_{section} Diameter of Section (Meter)
- dh|dx Piezometric Gradient
- dp|dr Pressure Gradient (Newton per Cubic Meter)
- **h** Height of Channel (Meter)
- H Hydraulic Gradient
- **h**_I Head Loss due to Friction (*Meter*)
- **k** Coefficient of Permeability (Centimeter per Second)
- L Length of Pipe (Meter)
- Q Discharge in Pipe (Cubic Meter per Second)
- R Horizontal Distance (Meter)
- · S Slope of Bed
- S Slope of Surface of Constant Pressure
- V_{mean} Mean Velocity (Meter per Second)
- γ_f Specific Weight of Liquid (Kilonewton per Cubic Meter)
- µ Dynamic Viscosity (Poise)
- V Kinematic Viscosity (Square Meter per Second)
- τ Shear Stress (Pascal)

Constants, Functions, Measurements used

- Function: sqrt, sqrt(Number)
 A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.
- Measurement: Length in Meter (m)
 Length Unit Conversion
- Measurement: Speed in Meter per Second (m/s), Centimeter per Second (cm/s)
 Speed Unit Conversion
- Measurement: Volumetric Flow Rate in Cubic Meter per Second (m³/s)

 Volumetric Flow Rate Unit Conversion
- Measurement: Dynamic Viscosity in Poise (P)
 Dynamic Viscosity Unit Conversion
- Measurement: Kinematic Viscosity in Square Meter per Second (m²/s) Kinematic Viscosity Unit Conversion
- Measurement: **Specific Weight** in Kilonewton per Cubic Meter (kN/m³) Specific Weight Unit Conversion
- Measurement: Pressure Gradient in Newton per Cubic Meter (N/m³)
 Pressure Gradient Unit Conversion
- Measurement: Stress in Pascal (Pa)
 Stress Unit Conversion

Check other formula lists

- Dash Pot Mechanism Formulas
- Laminar Flow around a Sphere Stokes' Law Formulas
- Laminar Flow between Parallel Flat Measurement of Viscosity Plates, one plate moving and other at rest, Couette Flow Formulas
- Laminar Flow between Parallel Plates, both Plates at Rest

- Formulas C
- Laminar Flow of Fluid in an Open Channel Formulas
 - Viscometers Formulas
- Steady Laminar Flow in Circular Pipes Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

9/30/2024 | 8:19:52 AM UTC

Please leave your feedback here...

