囲

calculatoratoz.com

Packing Formulas

Feel free to SHARE this document with your friends!

List of 56 Packing Formulas

Packing ©

Bolt Loads in Gasket Joints

1) Actual Cross-sectional Area of Bolts given Root Diameter of Thread
$f \mathrm{f} \mathrm{A}_{\mathrm{b}}=\frac{2 \cdot \pi \cdot \mathrm{y}_{\mathrm{sl}} \cdot \mathrm{G} \cdot \mathrm{N}}{\sigma_{\mathrm{sbat}}}$
ex $126.6466 \mathrm{~mm}^{2}=\frac{2 \cdot \pi \cdot 3.85 \mathrm{~N} / \mathrm{mm}^{2} \cdot 32 \mathrm{~mm} \cdot 4.1 \mathrm{~mm}}{25.06 \mathrm{~N} / \mathrm{mm}^{2}}$
2) Bolt Load in Design of Flange for Gasket Seating
$f_{\mathrm{x}} \mathrm{W}_{\mathrm{m} 1}=\left(\frac{\mathrm{A}_{\mathrm{m}}+\mathrm{A}_{\mathrm{b}}}{2}\right) \cdot \sigma_{\mathrm{sbat}}$
ex $15612.38 \mathrm{~N}=\left(\frac{1120 \mathrm{~mm}^{2}+126 \mathrm{~mm}^{2}}{2}\right) \cdot 25.06 \mathrm{~N} / \mathrm{mm}^{2}$
3) Bolt load under operating condition
$f \mathrm{f} \mathrm{W}_{\mathrm{m} 1}=\mathrm{H}+\mathrm{H}_{\mathrm{p}}$
ex $15486 \mathrm{~N}=3136 \mathrm{~N}+12350 \mathrm{~N}$

4）Bolt Load under operating condition given Hydrostatic End Force
$\mathrm{fx}_{\mathrm{x}} \mathrm{W}_{\mathrm{m} 1}=\left(\left(\frac{\pi}{4}\right) \cdot(\mathrm{G})^{2} \cdot \mathrm{P}\right)+(2 \cdot \mathrm{~b} \cdot \pi \cdot \mathrm{G} \cdot \mathrm{P} \cdot \mathrm{m})$

ex

$15486.8 \mathrm{~N}=\left(\left(\frac{\pi}{4}\right) \cdot(32 \mathrm{~mm})^{2} \cdot 3.9 \mathrm{MPa}\right)+(2 \cdot 4.2 \mathrm{~mm} \cdot \pi \cdot 32 \mathrm{~mm} \cdot 3.9 \mathrm{MPa} \cdot 3.75)$
5）Deflection of Spring Initial Bolt Load to Seal Gasket Joint
$f \mathrm{fx} \mathrm{y}_{\mathrm{sl}}=\frac{\mathrm{W}_{\mathrm{m} 2}}{\pi \cdot \mathrm{~b} \cdot \mathrm{G}}$
Open Calculator 飞
ex $3.801245 \mathrm{~N} / \mathrm{mm}^{2}=\frac{1605 \mathrm{~N}}{\pi \cdot 4.2 \mathrm{~mm} \cdot 32 \mathrm{~mm}}$
6）Gasket Width given actual Cross－sectional Area of Bolts
$f_{\mathrm{x}} \mathrm{N}=\frac{\sigma_{\mathrm{sbat}} \cdot \mathrm{A}_{\mathrm{b}}}{2 \cdot \pi \cdot \mathrm{y}_{\mathrm{sl}} \cdot \mathrm{G}}$
Open Calculator
ex $4.079069 \mathrm{~mm}=\frac{25.06 \mathrm{~N} / \mathrm{mm}^{2} \cdot 126 \mathrm{~mm}^{2}}{2 \cdot \pi \cdot 3.85 \mathrm{~N} / \mathrm{mm}^{2} \cdot 32 \mathrm{~mm}}$
7）Hydrostatic Contact Force given Bolt Load under Operating condition
$\mathrm{fx}_{\mathrm{x}} \mathrm{H}_{\mathrm{p}}=\mathrm{W}_{\mathrm{m} 1}-\left(\left(\frac{\pi}{4}\right) \cdot(\mathrm{G})^{2} \cdot \mathrm{P}\right)$
Open Calculator ©
ex $12349.43 \mathrm{~N}=15486 \mathrm{~N}-\left(\left(\frac{\pi}{4}\right) \cdot(32 \mathrm{~mm})^{2} \cdot 3.9 \mathrm{MPa}\right)$
8）Hydrostatic end force
$f \mathrm{f} H=\mathrm{W}_{\mathrm{m} 1}-\mathrm{H}_{\mathrm{p}}$
ex $3136 \mathrm{~N}=15486 \mathrm{~N}-12350 \mathrm{~N}$
9) Hydrostatic End Force given Bolt Load under Operating condition
$f_{\mathrm{x}} \mathrm{H}=\mathrm{W}_{\mathrm{m} 1}-(2 \cdot \mathrm{~b} \cdot \pi \cdot \mathrm{G} \cdot \mathrm{m} \cdot \mathrm{P})$
ex $3135.771 \mathrm{~N}=15486 \mathrm{~N}-(2 \cdot 4.2 \mathrm{~mm} \cdot \pi \cdot 32 \mathrm{~mm} \cdot 3.75 \cdot 3.9 \mathrm{MPa})$
10) Initial Bolt Load to seat Gasket Joint \simeq
$f \mathrm{f} \mathrm{W}_{\mathrm{m} 2}=\pi \cdot \mathrm{b} \cdot \mathrm{G} \cdot \mathrm{y}_{\mathrm{sl}}$
ex $1625.586 \mathrm{~N}=\pi \cdot 4.2 \mathrm{~mm} \cdot 32 \mathrm{~mm} \cdot 3.85 \mathrm{~N} / \mathrm{mm}^{2}$
11) Load on bolts based on hydrostatic end force
$f_{x} F_{b}=f_{s} \cdot P_{t} \cdot A_{m}$
ex $18816 \mathrm{~N}=3 \cdot 5.6 \mathrm{MPa} \cdot 1120 \mathrm{~mm}^{2}$
12) Stress Required for Gasket Seating
$f \mathrm{x} \sigma_{\text {sbat }}=\frac{2 \cdot \pi \cdot \mathrm{y}_{\mathrm{sl}} \cdot \mathrm{G} \cdot \mathrm{N}}{\mathrm{A}_{\mathrm{b}}}$
ex $25.18859 \mathrm{~N} / \mathrm{mm}^{2}=\frac{2 \cdot \pi \cdot 3.85 \mathrm{~N} / \mathrm{mm}^{2} \cdot 32 \mathrm{~mm} \cdot 4.1 \mathrm{~mm}}{126 \mathrm{~mm}^{2}}$
13) Stress Required for Gasket Seating given Bolt Load
$f \mathrm{fx} \sigma_{\text {sbat }}=\frac{\mathrm{W}_{\mathrm{m} 1}}{\frac{\mathrm{~A}_{\mathrm{m}}+\mathrm{A}_{\mathrm{b}}}{2}}$
ex $24.85714 \mathrm{~N} / \mathrm{mm}^{2}=\frac{15486 \mathrm{~N}}{\frac{1120 \mathrm{~mm}^{2}+126 \mathrm{~mm}^{2}}{2}}$
14) Test pressure given Bolt Load
f. $\mathrm{P}_{\mathrm{t}}=\frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{f}_{\mathrm{s}} \cdot \mathrm{A}_{\mathrm{m}}}$
ex $5.401786 \mathrm{MPa}=\frac{18150 \mathrm{~N}}{3 \cdot 1120 \mathrm{~mm}^{2}}$
15) Total cross-sectional area of bolt at root of thread
$f \mathrm{x} \mathrm{A}_{\mathrm{m} 1}=\frac{\mathrm{W}_{\mathrm{m} 1}}{\sigma_{\mathrm{sbd}}}$
Open Calculator ©
ex $297.8077 \mathrm{~mm}^{2}=\frac{15486 \mathrm{~N}}{52 \mathrm{~N} / \mathrm{mm}^{2}}$
16) Width of U Collar given Initial Bolt Load to Seat Gasket Joint
$\mathrm{fx} \mathrm{b}=\frac{\mathrm{W}_{\mathrm{m} 2}}{\pi \cdot \mathrm{G} \cdot \mathrm{y}_{\mathrm{sl}}}$
ex $4.146813 \mathrm{~mm}=\frac{1605 \mathrm{~N}}{\pi \cdot 32 \mathrm{~mm} \cdot 3.85 \mathrm{~N} / \mathrm{mm}^{2}}$

Elastic Packing

17) Diameter of Bolt given Frictional Force exerted by Soft packing on Reciprocating rod
$\mathrm{fx} \mathrm{d}=\frac{\mathrm{F}_{\text {friction }}}{.005 \cdot \mathrm{p}}$
ex $13.86792 \mathrm{~mm}=\frac{294 \mathrm{~N}}{.005 \cdot 4.24 \mathrm{MPa}}$
18) Fluid pressure by soft packing exerted by frictional force on reciprocating rod
$\mathrm{fx} \mathrm{p}=\frac{\mathrm{F}_{\text {friction }}}{.005 \cdot \mathrm{~d}}$
ex $4.2 \mathrm{MPa}=\frac{294 \mathrm{~N}}{.005 \cdot 14 \mathrm{~mm}}$
19) Fluid Pressure given Friction Resistance
$f \mathrm{x} \mathrm{p}=\frac{\mathrm{F}_{\text {friction }}-\mathrm{F}_{0}}{\mu \cdot \mathrm{~A}}$
ex $4.20202 \mathrm{MPa}=\frac{294 \mathrm{~N}-190 \mathrm{~N}}{0.3 \cdot 82.5 \mathrm{~mm}^{2}}$
20) Fluid Pressure given Torsional Resistance
$\mathrm{fx} \mathrm{p}=\frac{\mathrm{M}_{\mathrm{t}} \cdot 2}{.005 \cdot(\mathrm{~d})^{2}}$
Open Calculator ©
ex $4.204082 \mathrm{MPa}=\frac{2.06 \mathrm{~N} \cdot 2}{.005 \cdot(14 \mathrm{~mm})^{2}}$
21) Friction resistance
$\mathrm{fx} \mathrm{F}_{\text {friction }}=\mathrm{F}_{0}+(\mu \cdot \mathrm{A} \cdot \mathrm{p})$
ex $294.94 \mathrm{~N}=190 \mathrm{~N}+\left(0.3 \cdot 82.5 \mathrm{~mm}^{2} \cdot 4.24 \mathrm{MPa}\right)$
22) Frictional force exerted by soft packing on reciprocating rod
$f \times F_{\text {friction }}=.005 \cdot \mathrm{p} \cdot \mathrm{d}$
ex $296.8 \mathrm{~N}=.005 \cdot 4.24 \mathrm{MPa} \cdot 14 \mathrm{~mm}$

> Packing Formulas...
23) Seal resistance
$\mathrm{fx} \mathrm{F}_{0}=\mathrm{F}_{\text {friction }}-(\mu \cdot \mathrm{A} \cdot \mathrm{p})$
ex $189.06 \mathrm{~N}=294 \mathrm{~N}-\left(0.3 \cdot 82.5 \mathrm{~mm}^{2} \cdot 4.24 \mathrm{MPa}\right)$
24) Torsional Resistance given Fluid Pressure $\boxed{\square}$
$f \mathrm{fx} \mathrm{M}_{\mathrm{t}}=\frac{.005 \cdot(\mathrm{~d})^{2} \cdot \mathrm{p}}{2}$
$\operatorname{ex} 2.0776 \mathrm{~N}=\frac{.005 \cdot(14 \mathrm{~mm})^{2} \cdot 4.24 \mathrm{MPa}}{2}$
25) Torsional resistance in rotary motion friction
$\mathrm{fx} \mathrm{M}_{\mathrm{t}}=\frac{\mathrm{F}_{\text {friction }} \cdot \mathrm{d}}{2}$
ex $2.058 \mathrm{~N}=\frac{294 \mathrm{~N} \cdot 14 \mathrm{~mm}}{2}$

Metallic Gaskets

26) Frictional Force given Minor diameter of bolt
$f \mathrm{f} \mathrm{F}_{\mu}=\frac{\left(\mathrm{d}_{2}-\left(\frac{\sqrt{\left(\left(\mathrm{d}_{1}\right)^{2}-\left(\mathrm{d}_{\mathrm{gb}}\right)^{2}\right) \cdot \mathrm{p}_{\text {seal }}}}{\sqrt{\left(\mathrm{i} \cdot \mathrm{F}_{\mathrm{c}}\right)}}\right)\right) \cdot 3.14 \cdot \mathrm{i} \cdot \mathrm{F}_{\mathrm{c}}}{4}$
ex
$560.3676 \mathrm{~N}=\frac{\left(9.5 \mathrm{~mm}-\left(\frac{\sqrt{\left((34 \mathrm{~mm})^{2}-(11.5 \mathrm{~mm})^{2}\right) \cdot 4.25 \mathrm{MPa}}}{\sqrt{\left(2 \cdot 24.18 \mathrm{~N} / \mathrm{mm}^{2}\right)}}\right)\right) \cdot 3.14 \cdot 2 \cdot 24.18 \mathrm{~N} / \mathrm{mm}^{2}}{4}$
27) Minor Diameter of Bolt given Working Strength
$\mathbf{f x}_{\mathrm{f}}^{\mathrm{d}} \mathrm{d}_{2}=\left(\frac{\sqrt{\left(\left(\mathrm{d}_{1}\right)^{2}-\left(\mathrm{d}_{\mathrm{gb}}\right)^{2}\right) \cdot \mathrm{p}_{\text {seal }}}}{\sqrt{(\mathrm{i} \cdot 68.7)}}\right)+\frac{4 \cdot \mathrm{~F}_{\mu}}{3.14 \cdot \mathrm{i} \cdot 68.7}$
Open Calculator
$\operatorname{ex} 10822.58 \mathrm{~mm}=\left(\frac{\sqrt{\left((34 \mathrm{~mm})^{2}-(11.5 \mathrm{~mm})^{2}\right) \cdot 4.25 \mathrm{MPa}}}{\sqrt{(2 \cdot 68.7)}}\right)+\frac{4 \cdot 560.36 \mathrm{~N}}{3.14 \cdot 2 \cdot 68.7}$

Self Sealing Packing 전

28) Diameter of bolt given Radial ring wall thickness
$f \mathrm{fx} \mathrm{d}_{\mathrm{b}}=\frac{\left(\frac{\mathrm{h}}{6.36 \cdot 10^{-3}}\right)^{1}}{.2}$
ex $825.4717 \mathrm{~mm}=\frac{\left(\frac{1.05 \mathrm{~mm}}{6.36 \cdot 10^{-3}}\right)^{1}}{.2}$
29) Radial ring wall thickness considering SI units
$f \mathrm{x} h=6.36 \cdot 10^{-3} \cdot \mathrm{~d}_{\mathrm{b}}^{2}$
ex $6.12065 \mathrm{~mm}=6.36 \cdot 10^{-3} \cdot(825.4717 \mathrm{~mm})^{2}$
30) Radial Ring Wall Thickness given Width of U shaped collar
$f \mathrm{f} h=\frac{\mathrm{b}}{4}$
ex $1.05 \mathrm{~mm}=\frac{4.2 \mathrm{~mm}}{4}$
31) Width of U collar
$f \mathrm{f}$ b $=4 \cdot \mathrm{~h}$
ex $4.2 \mathrm{~mm}=4 \cdot 1.05 \mathrm{~mm}$

V Ring Packing

Multiple spring installations

32) Bolt Load given Flange pressure

$$
f \mathrm{x} \mathrm{~F}_{\mathrm{b}}=\mathrm{p}_{\mathrm{f}} \cdot \mathrm{a} \cdot \frac{\mathrm{C}_{\mathrm{u}}}{\mathrm{n}}
$$

ex $15.4 \mathrm{~N}=5.5 \mathrm{MPa} \cdot 100 \mathrm{~mm}^{2} \cdot \frac{0.14}{5}$
33) Bolt Load given Modulus of Elasticity and Increment Length
$\mathrm{fx} \mathrm{F}_{\mathrm{b}}=\mathrm{E} \cdot \frac{\mathrm{dl}}{\left(\frac{\mathrm{l}_{1}}{\mathrm{~A}_{\mathrm{i}}}\right)+\left(\frac{\mathrm{l}_{2}}{\mathrm{~A}_{\mathrm{t}}}\right)}$

$$
\text { ex } 99.53362 \mathrm{~N}=10.01 \mathrm{MPa} \cdot \frac{1.5 \mathrm{~mm}}{\left(\frac{3.2 \mathrm{~mm}}{53 \mathrm{~mm}^{2}}\right)+\left(\frac{3.8 \mathrm{~mm}}{42 \mathrm{~mm}^{2}}\right)}
$$

34) Bolt load in gasket joint
$\mathrm{fx} \mathrm{F}_{\mathrm{b}}=11 \cdot \frac{\mathrm{~m}_{\mathrm{ti}}}{\mathrm{dn}}$
ex $9821.429 \mathrm{~N}=11 \cdot \frac{2.5 \mathrm{~N}}{2.8 \mathrm{~mm}}$
35) Flange pressure developed due to tightening of bolt
$f \mathrm{x} \mathrm{p}_{\mathrm{f}}=\mathrm{n} \cdot \frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{a} \cdot \mathrm{C}_{\mathrm{u}}}$
ex $6482.143 \mathrm{MPa}=5 \cdot \frac{18150 \mathrm{~N}}{100 \mathrm{~mm}^{2} \cdot 0.14}$
36) Flange pressure given Twisting moment
$f \mathrm{x} \mathrm{p}_{\mathrm{f}}=2 \cdot \mathrm{n} \cdot \frac{\mathrm{T}}{\mathrm{a} \cdot \mathrm{C}_{\mathrm{u}} \cdot \mathrm{d}_{\text {bolt }}}$
ex $1031.746 \mathrm{MPa}=2 \cdot 5$.

$$
\frac{13 \mathrm{~N}^{*} \mathrm{~m}}{100 \mathrm{~mm}^{2} \cdot 0.14 \cdot 9 \mathrm{~mm}}
$$

37) Gasket Area given Flange pressure
$f \mathrm{fx}=\mathrm{a} \cdot \frac{\mathrm{F}_{\mathrm{b}}}{\mathrm{p}_{\mathrm{f}} \cdot \mathrm{C}_{\mathrm{u}}}$
ex $117857.1 \mathrm{~mm}^{2}=5 \cdot \frac{18150 \mathrm{~N}}{5.5 \mathrm{MPa} \cdot 0.14}$
38) Initial Bolt Torque given Bolt Load
$f \mathrm{fx} \mathrm{m}_{\mathrm{ti}}=\mathrm{dn} \cdot \frac{\mathrm{F}_{\mathrm{b}}}{11}$
$\operatorname{ex} 4.62 \mathrm{~N}=2.8 \mathrm{~mm} \cdot \frac{18150 \mathrm{~N}}{11}$
39) Minimum percentage compression
$f \mathrm{fx} \mathrm{P}_{\mathrm{s}}=100 \cdot\left(1-\left(\frac{\mathrm{b}}{\mathrm{h}_{\mathrm{i}}}\right)\right)$
ex $30=100 \cdot\left(1-\left(\frac{4.2 \mathrm{~mm}}{6 \mathrm{~mm}}\right)\right)$
40) Nominal Bolt Diameter given Bolt Load
$f \mathrm{x} \mathrm{dn}=11 \cdot \frac{\mathrm{~m}_{\mathrm{ti}}}{\mathrm{F}_{\mathrm{b}}}$
ex $1.515152 \mathrm{~mm}=11 \cdot \frac{2.5 \mathrm{~N}}{18150 \mathrm{~N}}$
41) Number of Bolts given Flange pressure
$\mathrm{fx}_{\mathrm{x}} \mathrm{n}=\mathrm{p}_{\mathrm{f}} \cdot \mathrm{a} \cdot \frac{\mathrm{C}_{\mathrm{u}}}{\mathrm{F}_{\mathrm{b}}}$
ex $0.004242=5.5 \mathrm{MPa} \cdot 100 \mathrm{~mm}^{2} \cdot \frac{0.14}{18150 \mathrm{~N}}$
42) Twisting Moment given Flange Pressure
$f \mathrm{x} T=\frac{\mathrm{p}_{\mathrm{f}} \cdot \mathrm{a} \cdot \mathrm{C}_{\mathrm{u}} \cdot \mathrm{d}_{\mathrm{bolt}}}{2 \cdot \mathrm{n}}$
ex $0.0693 \mathrm{~N}^{*} \mathrm{~m}=\frac{5.5 \mathrm{MPa} \cdot 100 \mathrm{~mm}^{2} \cdot 0.14 \cdot 9 \mathrm{~mm}}{2 \cdot 5}$
43) Uncompressed gasket thickness
$f \mathrm{fx} \mathrm{h}_{\mathrm{i}}=\frac{100 \cdot \mathrm{~b}}{100-\mathrm{P}_{\mathrm{s}}}$
Open Calculator
ex $5 \mathrm{~mm}=\frac{100 \cdot 4.2 \mathrm{~mm}}{100-16}$
44) Width of u collar given uncompressed Gasket Thickness
$\mathrm{fx} \mathrm{b}=\frac{\left(\mathrm{h}_{\mathrm{i}}\right) \cdot\left(100-\mathrm{P}_{\mathrm{s}}\right)}{100}$
Open Calculator
ex $5.04 \mathrm{~mm}=\frac{(6 \mathrm{~mm}) \cdot(100-16)}{100}$

Single spring installations

45) Actual Diameter of Spring Wire given Actual mean diameter of Conical spring
$f \mathrm{x} \mathrm{d}_{\mathrm{sw}}=2 \cdot\left(\mathrm{D}_{\text {driver } \mathrm{a}}+\mathrm{D}_{\mathrm{o}}-\left(\frac{\mathrm{w}}{2}\right)\right)$
Open Calculator ${ }^{3}$
ex $21.5 \mathrm{~mm}=2 \cdot\left(8 \mathrm{~mm}+7 \mathrm{~mm}-\left(\frac{8.5 \mathrm{~mm}}{2}\right)\right)$
46) Actual Diameter of Spring Wire given Deflection of Spring
$f x \mathrm{~d}_{\text {sw }}=.0123 \cdot \frac{\left(\mathrm{D}_{\text {driver a }}\right)^{2}}{\mathrm{y}}$
ex $0.302769 \mathrm{~mm}=.0123 \cdot \frac{(8 \mathrm{~mm})^{2}}{2.6 \mathrm{~mm}}$
47) Actual mean diameter of conical spring
$f \mathrm{f} \mathrm{D}_{\text {driver a }}=\mathrm{D}_{\mathrm{o}}-\left(\frac{1}{2}\right) \cdot\left(\mathrm{w}+\mathrm{d}_{\mathrm{sw}}\right)$
Open Calculator
ex $0.75 \mathrm{~mm}=7 \mathrm{~mm}-\left(\frac{1}{2}\right) \cdot(8.5 \mathrm{~mm}+4 \mathrm{~mm})$
48) Actual Mean Diameter of Conical Spring given Deflection of Spring
$f \mathrm{fx} \mathrm{D}_{\text {driver a }}=\frac{\left(\frac{\mathrm{y} \cdot \mathrm{d}_{\mathrm{sw}}}{0.0123}\right)^{1}}{2}$
ex $0.422764 \mathrm{~mm}=\frac{\left(\frac{2.6 \mathrm{~mm} \cdot 4 \mathrm{~mm}}{0.0123}\right)^{1}}{2}$
49) Deflection of conical spring
$f \mathrm{fx}=.0123 \cdot \frac{\left(\mathrm{D}_{\text {driver a }}\right)^{2}}{\mathrm{~d}_{\mathrm{sw}}}$
Open Calculator
ex $0.1968 \mathrm{~mm}=.0123 \cdot \frac{(8 \mathrm{~mm})^{2}}{4 \mathrm{~mm}}$
50) Diameter of wire for spring given Mean diameter of Conical spring
$f \mathrm{x} \mathrm{d}_{\mathrm{sw}}=\frac{\left(\frac{\pi \cdot\left(\mathrm{D}_{\mathrm{m}}\right)^{2}}{139300}\right)^{1}}{3}$
$\operatorname{ex} 3.3 \mathrm{E}^{\wedge}-6 \mathrm{~mm}=\frac{\left(\frac{\pi \cdot(21 \mathrm{~mm})^{2}}{139300}\right)^{1}}{3}$
51) Inside diameter of member given Mean diameter of Conical spring
$f \mathrm{f} \mathrm{D}_{\mathrm{i}}=\mathrm{D}_{\mathrm{m}}-\left(\left(\frac{3}{2}\right) \cdot \mathrm{w}\right)$
ex $8.25 \mathrm{~mm}=21 \mathrm{~mm}-\left(\left(\frac{3}{2}\right) \cdot 8.5 \mathrm{~mm}\right)$
52) Mean diameter of conical spring
$f \mathrm{fx} \mathrm{D}_{\mathrm{m}}=\mathrm{D}_{\mathrm{i}}+\left(\left(\frac{3}{2}\right) \cdot \mathrm{w}\right)$
ex $18.15 \mathrm{~mm}=5.4 \mathrm{~mm}+\left(\left(\frac{3}{2}\right) \cdot 8.5 \mathrm{~mm}\right)$
53) Mean diameter of conical spring given Diameter of spring wire
$\mathrm{fx} \mathrm{D}_{\mathrm{m}}=\frac{\left(\frac{\left(\mathrm{d}_{\mathrm{sw}}\right)^{3} \cdot 139300}{\pi}\right)^{1}}{2}$
$\operatorname{ex} 1.418898 \mathrm{~mm}=\frac{\left(\frac{(4 \mathrm{~mm})^{3} \cdot 139300}{\pi}\right)^{1}}{2}$
54) Nominal packing cross section given Actual mean diameter of Conical spring \longleftarrow
$f \mathrm{fx}=2 \cdot\left(\mathrm{D}_{\text {driver } \mathrm{a}}+\mathrm{D}_{\mathrm{o}}-\left(\frac{\mathrm{d}_{\mathrm{sw}}}{2}\right)\right)$
ex $26 \mathrm{~mm}=2 \cdot\left(8 \mathrm{~mm}+7 \mathrm{~mm}-\left(\frac{4 \mathrm{~mm}}{2}\right)\right)$
55) Nominal packing cross section given Mean diameter of Conical spring $₫$
$f \mathrm{x} \mathrm{w}=\left(\mathrm{D}_{\mathrm{m}}-\mathrm{D}_{\mathrm{i}}\right) \cdot \frac{2}{3}$
ex $10.4 \mathrm{~mm}=(21 \mathrm{~mm}-5.4 \mathrm{~mm}) \cdot \frac{2}{3}$
56) Outer Diameter of spring wire given Actual mean diameter of Conical spring
$f \mathrm{x} \mathrm{D}_{\mathrm{o}}=\mathrm{D}_{\text {driver a }}-\left(\frac{1}{2}\right) \cdot\left(\mathrm{w}+\mathrm{d}_{\mathrm{sw}}\right)$
ex $1.75 \mathrm{~mm}=8 \mathrm{~mm}-\left(\frac{1}{2}\right) \cdot(8.5 \mathrm{~mm}+4 \mathrm{~mm})$

Variables Used

- a Gasket Area (Square Millimeter)
- A Area of seal contacting sliding member (Square Millimeter)
- $\mathbf{A}_{\mathbf{b}}$ Actual Bolt Area (Square Millimeter)
- $\mathbf{A}_{\mathbf{i}}$ Area of cross section at the inlet (Square Millimeter)
- \mathbf{A}_{m} Greater Cross-section Area of Bolts (Square Millimeter)
- $\mathbf{A}_{\mathrm{m} 1}$ Bolt Cross-sectional Area at Root of Thread (Square Millimeter)
- $\mathbf{A}_{\mathbf{t}}$ Area of cross section at the throat (Square Millimeter)
- b Width of u-collar (Millimeter)
- b Width of U-Collar (Millimeter)
- $\mathrm{C}_{\mathbf{u}}$ Torque Friction Coefficient
- d Diameter of elastic packing bolt (Millimeter)
- $\mathbf{d}_{\mathbf{1}}$ Outside Diameter of Seal Ring (Millimeter)
- $\mathbf{d}_{\mathbf{2}}$ Minor Diameter of Metallic Gasket Bolt (Millimeter)
- $\mathbf{d}_{\mathbf{b}}$ Diameter of Bolt (Millimeter)
- $\mathbf{d}_{\text {bolt }}$ Diameter of Bolt (Millimeter)
- $\mathbf{D}_{\text {driver a }}$ Actual mean diameter of spring (Millimeter)
- $\mathbf{d}_{\mathbf{g b}}$ Nominal diameter of metallic gasket bolt (Millimeter)
- $\mathbf{D}_{\mathbf{i}}$ Inside Diameter (Millimeter)
- \mathbf{D}_{m} Mean Diameter of Conical Spring (Millimeter)
- $\mathbf{D}_{\mathbf{o}}$ Outer diameter of spring wire (Millimeter)
- $\mathbf{d}_{\mathbf{s w}}$ Diameter of spring wire (Millimeter)
- dl Incremental Length in Direction of Velocity (Millimeter)
- dn Nominal Bolt Diameter (Millimeter)
- E Modulus of Elasticity (Megapascal)
- F_{0} Seal Resistance (Newton)
- $\mathbf{F}_{\mathbf{b}}$ Bolt Load in Gasket Joint (Newton)
- $\mathbf{F}_{\mathbf{c}}$ Design Stress for metallic gasket (Newton per Square Millimeter)
- $F_{\text {friction }}$ Friction Force in elastic packing (Newton)
- $\mathbf{f}_{\mathbf{s}}$ Factor of Safety for Bolt Packing
- $\mathbf{F}_{\boldsymbol{\mu}}$ Friction force in metallic gasket (Newton)
- G Gasket Diameter (Millimeter)
- h Radial Ring Wall Thickness (Millimeter)
- H Hydrostatic End Force in Gasket Seal (Newton)
- $\mathbf{h}_{\mathbf{j}}$ Uncompressed gasket thickness (Millimeter)
- H_{p} Total Joint Surface Compression Load (Newton)
- i Number of bolts in metallic gasket seal
- I_{1} Length of joint 1 (Millimeter)
- \mathbf{I}_{2} Length of joint 2 (Millimeter)
- m Gasket Factor
- $\mathbf{M}_{\mathbf{t}}$ Torsional Resistance in Elastic Packing (Newton)
- m_{ti} Initial bolt torque (Newton)
- \mathbf{n} Number of Bolts
- \mathbf{N} Gasket Width (Millimeter)
- p Fluid Pressure in elastic packing (Megapascal)
- P Pressure at Outer Diameter of Gasket (Megapascal)
- \mathbf{p}_{f} Flange pressure (Megapascal)
- $\mathbf{P}_{\mathbf{s}}$ Minimum Percentage Compression
- Pseal Fluid Pressure on Metallic Gasket Seal (Megapascal)
- $\mathbf{P}_{\mathbf{t}}$ Test Pressure in Bolted Gasket Joint (Megapascal)
- T Twisting Moment (Newton Meter)
- w Nominal Packing Cross-section of Bush Seal (Millimeter)
- $\mathbf{W}_{\mathbf{m} 1}$ Bolt Load Under Operating Condition for Gasket (Newton)
- $\mathbf{W}_{\mathrm{m} 2}$ Initial bolt load to seat the gasket joint (Newton)
- y Deflection of Conical Spring (Millimeter)
- $\mathbf{y}_{\mathbf{s l}}$ Gasket Unit Seating Load (Newton per Square Millimeter)
- $\boldsymbol{\mu}$ Coefficient of Friction in elastic packing
- $\boldsymbol{\sigma}_{\text {sbat }}$ Stress Required for Gasket Seating (Newton per Square Millimeter)
- $\boldsymbol{\sigma}_{\mathbf{s b d}}$ Stress Required for Operating Condition for Gasket (Newton per Square Millimeter)

Constants, Functions, Measurements used

- Constant: pi, 3.14159265358979323846264338327950288 Archimedes' constant
- Function: sqrt, sqrt(Number)

A square root function is a function that takes a non-negative number as an input and returns the square root of the given input number.

- Measurement: Length in Millimeter (mm)

Length Unit Conversion

- Measurement: Area in Square Millimeter (mm^{2})

Area Unit Conversion

- Measurement: Pressure in Megapascal (MPa)

Pressure Unit Conversion

- Measurement: Force in Newton (N)

Force Unit Conversion $\boxed{\square}$

- Measurement: Moment of Force in Newton Meter ($\mathrm{N}^{*} \mathrm{~m}$) Moment of Force Unit Conversion
- Measurement: Stress in Newton per Square Millimeter ($\mathrm{N} / \mathrm{mm}^{2}$) Stress Unit Conversion

Check other formula lists

- Design of Clamp and Muff Coupling Formulas
- Design of Cotter Joint Formulas
- Design of Knuckle Joint Formulas
- Packing Formulas
- Retaining Rings and Circlips Formulas
- Riveted Joints Formulas
- Seals Formulas
- Threaded Bolted Joints Formulas
- Welded Joints Formulas

Feel free to SHARE this document with your friends!

PDF Available in

English Spanish French German Russian Italian Portuguese Polish Dutch

